Conveners
Medical Applications
- Etiennette Auffray Hillemanns (CERN)
Medical Applications
- Etiennette Auffray Hillemanns (CERN)
Medical Applications
- Hiro Tajima
Liquid xenon has several attractive features, which make it suitable for applications to nuclear medicine, such as high scintillation yield and fast scintillation decay time. Moreover, being a continuous medium with a uniform response, liquid xenon allows one to avoid most of the geometrical distortions of conventional detectors based on scintillating crystals. In this paper, we describe how...
CaLIPSO is an innovative $\gamma$ detector designed for high precision cerebral PET imaging. For the first time, liquid trimethylbismuth is used as sensitive medium. The detector operates as a time-projection chamber and detects both Cherenkov light and charge signal. Indeed, each 511-keV photon releases a single primary electron that triggers a Cherenkov radiation and ionizes the medium. As...
In Particle Therapy, the use of C, He and O ions as beam particles is being pursued to fully profit from their interaction with matter resulting into an improved efficacy in killing the cancer cells. An accurate on-line control of the dose release spatial distribution, currently missing in clinical practice, is required to ensure that the healthy tissues surrounding the tumor are spared,...
X-ray computed tomography (CT) is widely used in diagnostic imaging of the interior of the human body; however, the radiation dose of conventional CT typically amounts to 10 mSv. Under such environments, X-ray photons are severely piled-up; therefore, the CT images are monochromatic and various artifacts are present due to beam hardening effects. In contrast, photon counting CT (PC-CT) offers...
Measurement of gamma ray polarization can provide valuable insight in different areas of physics research: nuclear, particle and astrophysics. Also, since the polarizations of gamma quanta from positron annihilation are perpendicular, there have been studies to use these polarization correlations in Positron Emission Tomography (PET). The polarization of gammas can be determined from Compton...
The FOOT experiment was designed to identify the fragments produced in the human body during hadrontherapy and to measure their production cross-section. The ΔE-TOF detector of the FOOT apparatus estimates the atomic number Z and velocity β of the fragments by measuring the energy deposited (ΔE) in two layers of orthogonal plastic scintillator bars and the time-of-flight (TOF) with respect to...
proton Computed Tomography (pCT) is an emerging imaging modality useful in treatment of cancer using protons and heavy ions. The pCT collaboration in Bergen is building a prototype Digital Tracking Calorimeter (DTC) for proton therapy application. The DTC is a 41 layers of Si-Al sandwich structure where CMOS pixel sensors are used as the active element and aluminum is the absorbing material....
The MONDO (MOnitor for Neutron Dose in hadrOntherapy) project addresses the technical challenges posed by a neutron tracker detector: high detection efficiency and good backtracking precision. The project main goal is to develop a tracking device capable of fully reconstruct the four-momentum of the ultra-fast secondary neutrons produced in Particle Therapy treatments via double elastic...
In a PET scanner, the probability of early stage detection of cancer is increased by high spatial resolution and sensitivity. Depth Of Interaction (DOI) is an important quantity both in small PET scanners and also in whole-body PET machines.
The module we developed is a pixellated scintillator of LYSO crystals with single side readout and allows light recirculation thanks to a light and a...
MedAustron is an Austrian cancer treatment center for proton and carbon therapy. For clinical use protons are accelerated up to 250 MeV, whereas carbon ions will be available up to 400 MeV/u. The facility also features a unique beam line exclusively for non-clinical research. This research beam line will be commissioned for even higher proton energies of up to 800 MeV.
In this...
The Thin-TOF PET (TT-PET) project aims at the construction of a small-animal PET scanner based on silicon monolithic pixel sensors with 30 ps time resolution for 511 keV photons, equivalent to 100 ps time resolution for minimum ionizing particles. The high time resolution of the pixel sensor allows for precise time of flight measurement of the two photons and a significant improvement in the...