Conveners
Calorimeter
- Thomas Bergauer (Austrian Academy of Sciences (AT))
Calorimeter
- Iouri Tikhonov (Budker Institute of Nuclear Physics (RU))
The CMS experiment at CERN will undergo significant improvements during the so-called Phase-II Upgrade to cope with a 10-fold increase in luminosity of the High Luminosity LHC (HL-LHC) era. Especially the forward calorimetry will then suffer from very high radiation levels and intensified pile-ups in the detectors. Thus, the CMS collaboration is designing a High Granularity Calorimeter (HGCal)...
In light of the upgrade program of the ALICE detector a calorimeter at forward rapidities (FoCal) is being considered. This detector would measure photons, electrons, positrons and jets for rapidities eta > 3 offering a wealth of physics possibilities.
Its main focus is on measurements related to the structure of nucleons and nuclei at very low Bjorken-x and possible effects of gluon...
Calorimeters for future leptonic collider experiments have to provide extreme precision in reconstructing energies of both isolated particles and jets springing off the colliding beams. Thanks to the expected energy resolution and the excellent particle ID capability, the dual-readout fibre calorimeter could be a possible solution. This calorimetric technique reconstructs the electromagnetic...
The Mu2e experiment at Fermilab will search for the charged-lepton flavour violating neutrino-less conversion of a negative muon into an electron in the field of an aluminum nucleus.
The Mu2e detector is composed of a tracker and an electromagnetic
calorimeter and an external veto for cosmic rays.
The calorimeter plays an important role in providing excellent particle identification...
The electromagnetic calorimeter of the Belle II detector and its
performance in the first KEKB run during 2018 are described. It is a
high-granularity homogeneous calorimeter based on 8736 CsI(Tl)
scintillating crystals. The scintillation light is detected by two PIN
photodiodes. Electronics of the calorimeter provides signal readout with
2 MHz digitization followed by wave form analysis...
The challenges for new calorimetry for incoming experiments at intensity frontiers is to provide detectors with ultra-precise time resolution and supreme energy resolution.
Two very promising materials on the market are BrilLanCe (Cerium doped Lanthanum Bromide,
LaBr3 (Ce)) and LYSO (Lutetium Yttrium OxyorthoSilicate, Lu2(1-x) Y2x SiO5 (Ce)), supported by recent developments aiming at...
The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). It is a sampling calorimeter made of steel plates and plastic scintillators, read out by approximately 10,000 photomultipliers. In 2024, the LHC will be upgraded to the High Luminosity LHC (HL-LHC) allowing it to deliver up to 7 times the nominal instantaneous design...
The CMS electromagnetic calorimeter (ECAL) is a homogeneous calorimeter made of about 75000 lead tungstate scintillating crystals. In view of the high-luminosity phase of the LHC, the ECAL electronics must be upgraded to cope with the more stringent requirements in terms of trigger latency and rate. The new electronics will transmit the data in streaming mode from the front-end electronics to...