Speaker
Description
The study of electromagnetic transitions opens a window into the very nature of the strong interaction. And, indeed, such a study of how a ground-state nucleon transitions to an excited state, over a broad range of q$^2$, will provide keen insight into the evolution of how dynamically-generated masses emerge from the asymptotically-free, nearly massless quarks of perturbative QCD as well as provide information on the ancillary effects from the meson-baryon cloud. The space-like (q$^2$<0) region has been explored more intensively, particularly at JLab, but efforts have also begun in studying the time-like (q$^2$>0) region at GSI. We initiated these discussions at the May 2017 ECT workshop, which was entitled space-like and time-like electromagnetic baryonic transitions. The ECT workshop established the need and made the first steps towards a consistent description spanning the two kinematical regimes in q$^2$. This talk will continue the discussions of space-like and time-like baryonic transition form factors.