Help us make Indico better by taking this survey! Aidez-nous à améliorer Indico en répondant à ce sondage !

A natural 𝑍′-portal Majorana dark matter in alternative U(1) extended Standard Model

23 May 2019, 14:00
20m
Nueces Ballroom A (Omni Hotel)

Nueces Ballroom A

Omni Hotel

900 N Shoreline Blvd, Corpus Christi, TX 78401
Oral Dark Matter, Astroparticle Physics Dark Matter, Astroparticle Physics

Speaker

Satomi Okada

Description

We consider a non-exotic gauged U(1)_X extension of the Standard Model (SM), where the U(1)_X charge of a SM field is given by a linear combination of its hypercharge and Baryon-minus-Lepton (B−L) number. All the gauge and mixed gauge-gravitational anomalies are cancelled in this model with the introduction of three right-handed neutrinos (RHNs). Unlike the conventional minimal U(1)_X model, where a universal U(1)_X charge of −1 is assigned to three RHNs, we consider an alternative charge assignment, namely, two RHNs (N^{1,2}_R) have U(1)_X charge −4 while one RHN (N_R) has a +5 charge. With a minimal extension of the Higgs sector, the three RHNs acquire their Majorana masses associated with U(1)_X symmetry breaking. While N^{1,2}_R have Yukawa coupling with the SM lepton doublets and play an essential role for the 'minimal seesaw' mechanism, NR is isolated from the SM particles due to its U(1)_X charge and hence it is a natural candidate for the dark matter (DM) without invoking additional symmetries. In this model context, we investigate the Z′-portal RHN DM scenario, where the RHN DM communicates with the SM particles through the U(1)_X gauge boson (Z′ boson). We identify a narrow parameter space by combining the constraints from the observed DM relic abundance, the results of the search for a Z′ boson resonance at the Large Hadron Collider Run-2, and the gauge coupling perturbativity up to the Planck/Grand Unification scale. For a special choice of U(1)_X charges for the SM fields allows us to extend the model to SU(5)×U(1)_X grand unification. In this scenario, the model parameter space is more severely constrained, which will be explored at future high energy collider experiments.

Primary authors

Digesh Raut (University of Alabama) Prof. Nobuchika Okada (University of Alabama) Satomi Okada

Presentation materials