Conveners
Supersymmetry: Models, Phenomenology and Experimental Results
- Simone Pagan Griso (Lawrence Berkeley National Lab. (US))
Supersymmetry: Models, Phenomenology and Experimental Results
- Simone Pagan Griso (Lawrence Berkeley National Lab. (US))
Supersymmetry: Models, Phenomenology and Experimental Results
- Sven Heinemeyer (CSIC (Madrid, ES))
Supersymmetry: Models, Phenomenology and Experimental Results
- Keith Ulmer (University of Colorado, Boulder (US))
Supersymmetry: Models, Phenomenology and Experimental Results
- Sven Heinemeyer (CSIC (Madrid, ES))
Supersymmetry: Models, Phenomenology and Experimental Results
- Keith Ulmer (University of Colorado, Boulder (US))
Supersymmetry: Models, Phenomenology and Experimental Results
- Keith Ulmer (University of Colorado, Boulder (US))
Supersymmetry: Models, Phenomenology and Experimental Results
- Simone Pagan Griso (Lawrence Berkeley National Lab. (US))
Results from the CMS experiment are presented for searches for strong supersymmetric particle production. The results target a variety of gluino and squark production channels with decays to hadronic final states. The searches use proton-proton collision data with luminosity up to 137 fb-1 recorded by the CMS detector at center of mass energy 13 TeV during the LHC Run 2.
Results from the CMS experiment are presented for searches for strong supersymmetric particle production. The results target a variety of gluino and squark production channels with decays to final states with one or more leptons. The searches use proton-proton collision data with luminosity up to 137 fb-1 recorded by the CMS detector at center of mass energy 13 TeV during the LHC Run 2.
The MSSM provides a natural dark matter candidate and an explanation for the 3.5 sigma discrepancy between experimental measurements of the muon's anomalous magnetic moment and Standard Model predictions. By utilizing Monte Carlo Markov Chains, we reconstruct the probability distribution characterize phenomenologically-motivated and theoretically-sound MSSM configurations that satisfy limits...
Despite the absence of experimental evidence, weak-scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarizes recent ATLAS results on inclusive searches for supersymmetric squarks of the first two generations and gluinos. ย It covers both R-parity conserving models that predict dark matter candidates and R-parity violating models that...
Results from the CMS experiment are presented for searches for supersymmetric stop and sbottom production. A variety of final state decays are considered with an emphasis on targeting difficult to reach kinematic regions. The searches use proton-proton collision data with luminosity up to 137 fb-1 recorded by the CMS detector at center of mass energy 13 TeV during the LHC Run 2.
Naturalness arguments for weak-scale supersymmetry favour supersymmetric partners of the third generation quarks with masses not too far from those of their Standard Model counterparts. ย Top or bottom squarks with masses less than or around one TeV can also give rise to direct pair production rates at the LHC that can be observed in the data sample recorded by the ATLAS detector. The talk...
Supersymmetric models are some of the most popular and well-motivated extensions of the Standard Model, and hence they have been constrained by a vast array of different experimental searches. The diversity of experimental constraints, combined with a large number of parameters, makes the systematic study of SUSY models increasingly complicated and old-school parameter scans are insufficient....
Studying the properties of Higgs boson becomes one important method to explore the physics beyond the Standard Model (SM). In this work, we present studies on the implications of the Higgs precision measurements at future Higgs Factories on the Minimal Supersymmetric Standard Model (MSSM). A multi-variable global fit to various Higgs search channels and also Higgs mass based on both the...
Supersymmetric models are subject both to direct constraints from collider searches and to indirect limits from electroweak observables such as the Higgs mass and flavor-changing processes. A minimal scenario consistent with current experimental data suggests a supersymmetric spectrum with a split sfermion sector. Such a spectrum can naturally be realized when partial compositeness is used to...
We propose a simultaneous explanation of two recent anomalous observations at very different energy scales. The first one concerns hints of lepton flavor universality violation in rare B-meson decays, as observed by LHCb, and to some extent, by Belle and BaBar. The second anomaly is the observation made by the ANITA balloon experiment of two EeV upgoing air showers. Both these observations are...
SUSY with weak scale soft breaking terms is highly motivated theoretically and is also supported by a variety of measured virtual effects. The question is: where are the sparticles and where are the WIMPs? A more nuanced view of naturalness can
reconcile TeV-scale soft terms and mh=125 GeV with naturalness but where now only the higgsinos need lie close to the weak scale while top-squarks may...
Charginos and neutralinos are typically the lightest new particles predicted by a wide range of supersymmetry models, and the lightest neutralino is a well motivated and studied candidate for dark matter in models with R-parity conservation. The talk presents recent results from searches for pair produced charginos and neutralinos in final states with leptons and missing transverse momentum....
Results from the CMS experiment are presented for searches for supersymmetric electroweak gauge bosons and for direct production searches for supersymmetric lepton partners. A variety of electroweak production channels are considered with results presented for different final state decays. The searches use proton-proton collision data with luminosity up to 137 fb-1 recorded by the CMS detector...
Electroweak sectors of beyond the Standard Model theories can contain several new degrees of freedom that are lighter than the 125 GeV Higgs boson, and hidden to present LHC searches. One example is the Next-to-Minimanl Supersymmetric Standard Model (NMSSM) augmented with a Peccei-Quinn (PQ) symmetry. In this talk we highlight many new signatures arising from this model that can be looked for...
Many supersymmetry models feature gauginos and sleptons with masses less than a few hundred GeV. These can give rise to direct pair production rates at the LHC that can be observed in the data sample recorded by the ATLAS detector. The talk presents recent ATLAS results from searches for slepton pair production.
We review the predictions of the favored SUSY parameter spaces. They are based on fits to all relevant experimental data. The implications of these predictions for the HL-LHC and ILC/CLIC are discussed.
We will discuss baryogenesis via a gaugino portal, the supersymmetric counterpart to the widely studied kinetic mixing portal, to a hidden sector. We will examine this mechanism within various scenarios, including freeze-in or freeze-out of the hidden sector gaugino, as well as extended frameworks where the hidden sector contains a weakly interacting massive particle (WIMP) dark matter...
We present the predictions for the properties of DM based on LHC searches and all other relevant constraints. This is done in Supersymmetric models as well as in Simplified Models.
we first briefly review the recent progress in the calculation of the MSSM Higgs-boson masses. The new and improved calculations are then applied to several GUT-based and low-energy scenarios. The impact of the improved Higgs-boson mass calculation on the preferred parameter space(s) is analyzed.
Results from the CMS experiment are presented for searches for supersymmetric particle production with tau leptons in the final state. The searches use proton-proton collision data with luminosity up to 137 fb-1 recorded by the CMS detector at center of mass energy 13 TeV during the LHC Run 2.
The search for weak-scale SUSY is one of the highest physics priorities for the current and future LHC runs. The high luminosity upgrade of the LHC (HL-LHC) is expected to deliver proton-proton collisions at a centre-of-mass-energy of 14 TeV, with an integrated luminosity of around 3000 fb-1. The large dataset expected at the end of HL-LHC offers an unprecedented discovery potential for...
The proposed 100 TeV pp collider (FCC-hh) is designed to collect a total luminosity of 20/ab providing an un-precedented discovery opportunity for physics beyond the Standard Model. This presentation focuses on the
prospects for discovering supersymmetry at the future circular proton-proton collider.
There are many models beyond the standard model which include electroweakly interacting massive particles (EWIMPs), often in the context of the dark matter. We study the indirect search of EWIMPs using a precise measurement of the lepton pair production cross sections at future 100 TeV hadron colliders. It is revealed that this search strategy is suitable in particular for Higgsino and that...
Many supersymmetric scenarios feature final states with non-standard final state objects. The production of massive sparticles can lead to the production of boosted top quarks or vector bosons, high-pt b-jets. At the same time, transitions between nearly mass-degenerate sparticles can challenge the standard reconstruction because of the presence of very soft leptons or jets (including the...
It is known that de Sitter solutions in supergravity require supersymmetry breaking. I will present a new construction that allows the inclusion of the goldstino into supergravity, based on applying the Stueckelberg trick to a novel superfield formulation of unimodular supergravity. I will show the existence of de Sitter solutions and also the connection to the Volkov-Akulov model in the flat...
Particle physics models with Peccei-Quinn (PQ) symmetry breaking as a consequence of supersymmetry (SUSY) breaking are attractive in that they solve the strong CP problem with a SUSY DFSZ-like axion, link the SUSY breaking and PQ breaking intermediate mass scales and can resolve the SUSY $\mu$ problem with a naturalness-required weak scale $\mu$ term whilst soft SUSY breaking terms inhabit the...
One of the outstanding problems in theoretical physics is the cosmological constant problem. In the context of supersymmetry, the origin of supersymmetry breaking remains a mystery. We present a self-contained no-scale supergravity model which incorporates the Starobinsky-like inflation, an adjustable supersymmetry breaking scale $\mathcal{O}(10^{3})$ GeV, and a small positive cosmological...
I will discuss an intriguing observation that the values of all the couplings in the standard model except those related to first two generations can be understood from the IR fixed point structure of renormalization group equations in the minimal supersymmetric model extended by one complete vectorlike family with the scale of new physics in a multi-TeV range.
Suppressed SUSY is a mechanism for generating a realistic model based on SUSY, but without spontaneous or explicit breaking of SUSY. It arises from a canonical transformation, which preserves the BRST Master Equation of Supergravity, coupled to, for example, SU(5) Grand Unified Supersymmetric Gauge Theory with Matter. The canonical transformation preserves the Master Equation, but the...
With the lack of experimental evidence for weak-scale SUSY in simple scenarios, focus is shifting to strengthening exclusion limits on many models. One of the simplest mechanisms has been by the introduction of multi-bin fits in analyses. However, these pose a difficult problem for phenomenologists wanting to test their models: insufficient information is made available to fully evaluate the...
Results from the CMS and ATLAS experiments are presented for searches for supersymmetric electroweak gauge bosons. Small mass splittings between electroweak states known as a compressed spectrum present unique experimental challenges. This talk describes the new techniques utilized by CMS and ATLAS to address such difficult scenarios. The searches use proton-proton collision data with...
We discuss prospects of searching for decays of heavy Higgs bosons into electroweak superpartners at the high luminosity LHC. In addition to the kinematic handles offered by the presence of a resonant particle in the production chain, heavy Higgs decays can be the dominant production mode of these superpartners, making it possible to extend coverage to otherwise inaccessible regions of the...
Results from the CMS experiment are presented for searches for supersymmetric particle production with Higgs bosons in the final state. Strong and electroweak production are considered in a variety of Higgs decay channels. The searches use proton-proton collision data with luminosity up to 137 fb-1 recorded by the CMS detector at center of mass energy 13 TeV during the LHC Run 2.
We show that the well known Georgi-Machacek (GM) model can be realized as a limit of the recently constructed Supersymmetric Custodial Higgs Triplet Model (SCTM) which in general contains a significantly more complex scalar spectrum. We dub this limit as the Supersymmetric GM (SGM) model, which gives a weakly coupled origin for the GM model at the electroweak scale. We derive a mapping between...
I will discuss the di-Higgs production via gluon fusion within the context of Minimal Supersymmetric Standard Model (MSSM) and Next-to-Minimal Supersymmetric Standard Model (NMSSM). The calculation is based on the analytical expression of the leading order Feynman amplitudes (which includes both quark and squark loops), and therefore, both off-shell effects and interference between resonant...
Experiments at the LHC have not yet seen any direct signs of superpartners.
Many authors have suggested mechanisms that reduce the SUSY reach of the
LHC from its canonical expectation. After a lightning review of these, I will
reexamine the fine-tuning arguments that led to these canonical expectations
and argue that the non-appearance of superpartners may not be at odds with
SUSY...
Supersymmetric models present a wide variety of signatures that might be accessible at the LHC. In some cases supersymmetric particles may acquire finite lifetimes, and once produced in collisions, their direct trajectories or decay products can be observed as highly distinctive signatures with relatively small backgrounds. In recent years, the capability of the ATLAS experiment to search for...
Results from the CMS experiment are presented for searches for supersymmetric particle production in decays channels with long-lived particles. Long-lived final states can arise in many SUSY scenarios resulting in a diverse array of striking signatures. Results are presented here from several such scenarios. The searches use proton-proton collision data with luminosity up to 137 fb-1 recorded...
We investigate a class of models where the supergravity model with the standard model gauge group is extended by a hidden sector $U(1)_X$ gauge group and where the lightest supersymmetric particle is the neutralino in the hidden sector. We investigate this possibility in a class of models where the stau is the lightest supersymmetric particle in the MSSM sector and the next-to-lightest...
R-parity violation introduces many viable signatures to the search for supersymmetry at the LHC. The decay of supersymmetric particles can produce leptons or jets, while removing the missing transverse momentum signal common to traditional supersymmetry searches. The talk presents recent results from searches of supersymmetry in these unusual signatures of R-parity violation
with the ATLAS and...
Supersymmetry was proposed to be the underlying physics of the flavor puzzle. The charged lepton mass hierarchy was naturally understood. The model is predictive. CP violation in the lepton sector, and other aspects of neutrino physics, are studied. In addition to the sneutrino vacuum expectation values (VEVs), the heavy vector-like triplet also contributes to neutrino masses. Phases of the...
The null results of the LHC searches have put strong bounds on new physics scenario such as supersymmetry (SUSY). With the latest values of top quark mass and strong coupling, we study the upper bounds on the sfermion masses in Split SUSY from the observed Higgs boson mass and electroweak (EW) vacuum stability. To be consistent with the observed Higgs mass, we find that the largest value of...