Conveners
Neutrinos: Models, Phenomenology, Experiments
- Grayson Rich (University of Chicago)
Neutrinos: Models, Phenomenology, Experiments
- Jayden Newstead
Neutrinos: Models, Phenomenology, Experiments
- Cedric Weiland (University of Pittsburgh)
Neutrinos: Models, Phenomenology, Experiments
- Goran Senjanovic
Neutrinos: Models, Phenomenology, Experiments
- Julian Heeck (UC Irvine)
NOvA is a long-baseline neutrino oscillations experiment designed to precisely measure the neutrino oscillation parameters. We do this by di- recting a beam of predominantly muon neutrinos from Fermilab towards northern Minnesota. The experiment consists of two functionally equiv- alent detectors each located 14.6 mrad off the central axis of Fermilabโs 700 kW NuMI neutrino beam, the worldโs...
In this work we study the intrinsic CPT violation in the neutrino oscillations phenomena produced by quantum decoherence as sub-leading effect. In the usual representation, we find that only fifteen elements of the decoherence matrix violate the CPT symmetry intrinsically. We find exact solutions for the CPT asymmetry function in vacuum . We define an observable $\mathcal{R}$ to make...
We present a novel framework that provides an explanation to the long-standing excess of electronlike events in the MiniBooNE experiment at Fermilab. We suggest a new dark sector containing a dark neutrino and a dark gauge boson, both with masses between a few tens and a few hundreds of MeV. Dark neutrinos are produced via neutrino-nucleus scattering, followed by their decay to the dark gauge...
The discovery of a light sterile neutrino would have profound implications for particle physics, astrophysics, and cosmology. A number of anomalous neutrino measurements at short distances may be indicative of the active neutrinos mixing to at least one sterile flavor. A worldwide program, involving reactor, source, and accelerator-based experiments is currently underway and searching for...
The field of coherent elastic neutrino-nucleus scattering (CEvNS) has grown immensely in recent years. In this talk I will provide an overview of the field, summarizing the running experiments, phenomenological implications and theoretical challenges. With the first detection made by COHERENT in 2017, the goal is now to make more precise measurements using a diverse set of target nuclei and...
Neutrinos emitted nuclear reactors have played an important role for both discovery and measurement in the history of neutrino physics. The short baseline reactor neutrino experiments, Daya Bay, Double Chooz, and RENO, have brought neutrino physics into the precision era. The next generation medium baseline reactor neutrino experiments JUNO will explore the neutrino mass hierarchy and other...
Current models of antineutrino production in nuclear reactors predict absolute detection rates and energy spectra at odds with the existing body of direct reactor antineutrino measurements.ย If these discrepancies are taken seriously, then they must be indicative of a misunderstanding of neutrino production in nuclear reactor cores and/or the fundamental properties of neutrinos. New...
The NEXT collaboration is developing a sequence of high pressure xenon gas time projection chambers with the aim of creating a ton-scale, very low background neutrinoless double beta decay search. Finding evidence of neutrinoless double beta decay would give insight into the origins of the matter-antimatter asymmetry in the universe, the smallness of neutrino mass, and the symmetry structure...
The existence of tiny neutrino masses and flavor mixings can be explained naturally in various seesaw models, many of which typically having additional Majorana type SM gauge singlet right handed neutrinos ($N$). If they are at around the electroweak scale and furnished with sizable mixings with light active neutrinos, they can be produced at high energy colliders such as LHC and ILC. A...
We show that the Deep Underground Neutrino Experiment (DUNE) has the potential to deliver world-leading results in solar neutrinos. With an exposure of 100 kton-year, DUNE could detect 10^5 signal events above 5 MeV electron energy. Separate precision measurements of neutrino-mixing parameters and the 8B flux could be made using two detection channels and the day-night effect. New particle...
Current and future experiments aimed at making precision measurements of neutrino properties require better understanding of neutrino interactions with the nucleus to achieve their ultimate sensitivities. The NOvA (NuMI Off-axis $\nu_e$ Appearance) experiment is a long-baseline neutrino oscillation experiment designed to observe neutrinos in Fermilab's NuMI (Neutrinos at the Main Injector)...
Neutrinos may be Dirac particles whose masses arise radiatively at one-loop, naturally explaining their small values. In this work we show that all the one-loop realizations of the dimension-five operator to effectively generate Dirac neutrino masses can be implemented by using a single local symmetry: $๐(1)_{๐ตโ๐ฟ}$. Since this symmetry is anomalous, new chiral fermions, charged under $๐ตโ๐ฟ$,...
We present experimental implications of lepton flavor-violating processes within a supersymmetric type-I seesaw framework in three-extra-parameter non-universal Higgs model (NUHM3) where right handed neutrinos act as the source of lepton flavor violation. Our numerical analysis includes full 2-loop renormalization group running effects for the three neutrino masses and mass matrices. We show...
Abstract:
We assess the sensitivity of the LHC, its high energy upgrade, and a prospective 100 TeV hadronic collider to the Dirac Yukawa coupling of the heavy neutrinos in left-right symmetric models (LRSMs). We focus specifically on the trilepton final state in regions of parameter space yielding prompt decays of the right-handed gauge bosons (WR) and neutrinos (NR). In the minimal LRSM, the...
In models of radiative neutrino neutrino masses, new scalar bosons that generate the masses can also induce significant nonstandard neutrino interactions (NSI). In this talk I will present our results of a comprehensive analysis of NSI in such models. Diagonal NSIs of orderr several percent are found to be possible, esepcially in the Zee model that utilizes charged scalars. Tests of this...
The lepton flavor symmetries of the Standard Model are clearly broken in neutrino oscillations, yet we have not observed any charged-lepton flavor violation. I will review the connection between neutrino masses and flavor violation in some popular models and highlight the importance and complementarity of different experimental search channels.
Flavour, SUSY and GUTs are some of the best motivated BSM symmetries, although it is hard to make them work together consistently. It is shown how through Extra Dimensions we can greatly simplify the flavour alignment process. We show different mechanisms to obtain the flavour symmetries and highly predictive flavon alignments, such as CSD3 and the TBM, through different orbifolds.
The addition of right-handed neutrino fields to the SM field content provides a minimal and viable solution to account for the observed neutrino masses and lepton mixing. Remarkably, the very same extension contains all the necessary ingredients to account for the observed BAU as well. In this talk I will focus on the possibility that the right-handed neutrinos have masses below the EW scale,...
Heavy neutral leptons are part of many extensions of the Standard Model, in particular seesaw models that can explain the light neutrino masses and mixing. Many search strategy have been proposed, either via the direct production of the new heavy neutral leptons or via their indirect effects in processes like lepton flavour violation. We will discuss a direct search strategy at hadron...
We explore how the observed characteristics of neutrino masses โsmall mass scale, mild hierarchy, large mixing anglesโ can be explained in a simple extension of the standard model, where lepton number is broken at the Planck-scale.
While the correct mass scale for the light neutrinos is naturally explained in this model without the need for a new scale in the theory, the mild hierarchy can be...
The Clockwork (CW) mechanism can explain the smallness of neutrino masses without introducing unnaturally small input parameters. We study the simplest CW neutrino model, the "uniform" clockwork, as well as a broader class of "generalized" clockwork models. We derive constraints on such models from lepton-flavor violating processes, as well as precision electroweak fits. These constraints...
The correct quark and charged lepton mass matrices along with a nearly correct CKM matrix may be naturally accomodated in a Pati-Salam model constructed from intersecting D6 branes on a $T^6/(Z_2 \times Z_2)$ orientifold. Furthermore, near-tribimaximal mixing for neutrinos may arise naturally due to the structure of the Yukawa matrices in the model. Consistency with the quark and charged...
Neutrino masses and the existence of non-baryonic Dark Matter (DM) are together with the Baryon asymmetry in the Universeย three evidences that the Standard Model is not the final theory to describe our nature.ย ย ย In thisย talkย Iย intendย to give a brief review of models to generate neutrino masses. I will in particular discuss scenarios where the generation of neutrino masses is linked to the...
Since the confirmation of neutrino oscillations in the late 90s, it became apparent that the road to new physics is paved with neutrinos. On top of that, a plethora of evidence suggests the existence of a dark matter component that cannot be described without an extension to the Standard Model (SM). As a result, many proposed solutions that reconcile the SM with dark matter incorporate a new...
Lepton number has a deep connection with the neutrino mass generation. A new minimal anomaly-free gauged $U(1)_l$ lepton-number model, with four exotic chiral leptons, is studied. Motivated by phenomenology, we discuss a simplified case which has the universal Yukawa couplings. It agrees with all the experimental constraints and predicts $m_e, m_\mu \ll m_\tau$, and the latter is of the...
Abstract:
The presence of new neutrino-quark interactions can enhance, deplete or distort the coherent elastic neutrino-nucleus scattering (CEvNS) event rate. The new interactions can involve CP violating phases that can potentially affect these features. Assuming vector light mediators we study the effects of CP violation on the CEvNS process, and for that aim we consider the COHERENT...