Conveners
Alternatives to Supersymmetry
- William Shepherd (Johannes Gutenberg University Mainz)
- William Shepherd (University of California Irvine)
- William Shepherd (Johannes Gutenberg University Mainz)
Alternatives to Supersymmetry
- Ethan Neil (Fermilab)
- Ethan Neil (University of Colorado, Boulder)
- Ethan Neil (University of Colorado, Boulder)
Alternatives to Supersymmetry
- Christopher Verhaaren (University of California, Davis)
Alternatives to Supersymmetry
- Zoltan Gecse (Fermi National Accelerator Lab. (US))
In this talk, I will discuss about the phenomenology of the composite Higgs models at the LHC and future lepton colliders. Spin-1 resonances and the top partners are the smoking gun of the composite Higgs models, their strong interactions will play an important role in the searching for the resonances and cascade decay channels can be important. I will discuss about their prospectives at the...
In composite Higgs models, relating the many parameters of the low-energy effective theory to the fundamental UV parameters requires dealing with the underlying non-perturbative interactions responsible for compositeness. Lattice field theory calculations allow this connection to be made numerically, giving significant model constraints. I will present several results from a detailed lattice...
Searches for new resonances in di-boson final states (VV, VH, HH, where V = W, Z) with the CMS detector are presented. The results are based on the large dataset collected during Run 2 of the LHC at a centre-of-mass energy of 13 TeV. The analyses are optimised for high sensitivity over a large range in resonance mass. Jet substructure techniques are used to identify hadronic decays of...
The full Run-2 ATLAS results on searches for resonant production of vector (W,Z) are presented, comprising 140fb-1 of data. Searches for such diboson resonances have been performed in final states with different numbers of leptons and jets where new jet substructure techniques to disentangle the hadronic decay products in highly boosted configuration are being used.
The discovery of a Higgs boson at the Large Hadron Collider (LHC) motivates searches for physics beyond the Standard Model (SM) in channels involving coupling to the Higgs boson. A search for a massive resonance decaying into a standard model Higgs boson (h) and a W or Z boson or two a standard model Higgs bosons is performed. The results of a search for non-resonant Higgs boson pair...
We present results from searches for resonances with enhanced couplings to third generation quarks, based on proton-proton collision data at a centre-of-mass energy of 13 TeV recorded by CMS. The signatures include single and pair production of vector-like quarks and heavy resonances decaying to third generation quarks. A wide range of final states, from multi-leptonic to entirely hadronic is...
Simple generalizations of well known BSM scenarios can lead to dramatic signals at colliders, providing interesting theoretical playgrounds and motivating new methods to isolate non-standard experimental signals. In this talk, I will consider warped extra-dimensional models with multiple branes in the IR and discuss the theoretical possibilities and related collider signals. The resulting...
Massive spin-2 particles cause trouble in 4D quantum field theory: not only are their tree-level matrix elements sometimes complicated, but some diagrams grow like ten powers of incoming energy! As a result, these theories violate unitarity even at small energy scales. However, massive spin-2 particles naturally appear when projecting nicely-behaved higher-dimensional models down to 4D. If...
The evidence for dark matter is overwhelming, but its nature is unknown. Dark matter can be composed of the magnetic monopoles of a hidden sector, which acquire small coupling to the visible photon through kinetic mixing. When the hidden sector U(1) is broken, the monopoles confine, connected by a tube of magnetic flux. These flux tubes give rise to phase shifts in Aharanov-Bohm experiments. I...
We study CPT and Lorentz violation in the tau-lepton sector of the Standard Model in the context of the Standard-Model Extension, described by a coefficient which is thus far unbounded by experiment. We show that any non-zero value of this coefficient implies that, for sufficiently large energies, standard-model fermions become unstable against decay due to the emission of a pair of...
The Twin Higgs mechanism can address the naturalness problem without introducing partner particles that are produced at colliders with a large cross section. Only the scalar modes and optionally the twin hypercharge gauge boson have direct couplings to the Standard Model states and are therefore the first modes that can be accessed at colliders. We comment on measurements that can be performed...
We present an ultraviolet extension of the Twin Higgs in which the radial mode of twin symmetry breaking is itself a pseudo-goldstone boson. This “turtle” structure raises the scale of new colored particles in exchange for additional states in the Higgs sector, making multiple Higgs-like scalars the definitive signature of naturalness in this context. We explore the parametrics and...
Mirror sectors -- hidden sectors that are approximate copies of the Standard Model -- are a generic prediction of many models, notably the Mirror Twin Higgs model. Such models can have a rich cosmology and many interesting detection signatures beyond the realm of colliders. In this talk, I will focus on the possibility that mirror matter can form stars which undergo mirror nuclear fusion in...
We explore the physics potential of using precision timing information at the LHC in searches for long-lived particles (LLPs). In comparison with the light Standard Model particles, the decay products of massive LLPs arrive at detectors with time delays around nanosecond scale. We propose new strategies to take advantage of this time delay feature by using initial state radiation to timestamp...
The CMS detector explores a wide range of non-standard signatures including displaced and delayed particles, which allow to explore various models from supersymmetry and beyond standard models. Newly set limits on long-lived exotic particles will be presented. These results are obtained with data recorded in proton-proton collisions at sqrt(s) = 13 TeV in Run 2 of the LHC.
Various theories beyond the Standard Model predict unique signatures which are difficult to reconstruct and for which estimating the background rates is also a challenge. Signatures from displaced decays anywhere from the inner detector to the muon spectrometer, as well as those of new particles with fractional or multiple value of the charge of the electron or high mass stable charged...
I present constraints derived in a consistent and conservative way on the Wilson coefficients of the SMEFT from dilepton data at Tevatron and the LHC, and present the calculation of loop-level matching needed to utilize flavor data to constrain flavor-blind SMEFT effects. These are important new sources of constraint that will ultimately feed in to a global analysis of generic,...
Many theories beyond the Standard Model predict new phenomena which decay to jets. Such final states are of particular interest at the LHC since new phenomena produced in parton collisions are likely to produce final states with (at least) two partons. This talk presents the latest 13 TeV ATLAS and CMS results, covering exclusive searches for dijet and dibjet resonances along with searches...
Many particles predicted by theories beyond the Standard Model, including for example new heavy vector bosons, decay into final states which contain high-pt leptons and possibly other objects such as missing transverse energy or jets. Searches for new physics models with these signatures are performed using the ATLAS and CMS experiments at the LHC. The talk will focus on the most recent...
The High-Luminosity Large Hadron Collider (HL-LHC) is expected to deliver an integrated luminosity of up to 3000 fb-1. The very high instantaneous luminosity will lead to about 200 proton-proton collisions per bunch crossing (“pileup”) superimposed to each event of interest, therefore providing extremely challenging experimental conditions. The sensitivity to find new physics Beyond the...
The Large Hadron Collider (LHC) has been successfully delivering proton-proton collision data at the unprecedented center of mass energy of 13 TeV.
An upgrade is planned to increase the instantaneous luminosity delivered by the LHC in what is called HL-LHC, aiming to deliver a total of about 3000/fb of data to the ATLAS detector at a center of mass energy of 14 TeV. To cope with the expected...
We revisit the Killing symmetries of the Schwrzschild geometry with a renewed interest to revel the constants of motion in the General Relativity (GR). A term (ML^2/r^3) in the effective potential on an equatorial plane is known to hint
at a quantum gravity phenomenon! However no exact geometry underlying the new conserved charge (ML^2) is known GR and in a lower or many higher dimensional...