Speaker
Description
Analytic solutions of a nonlinear boson diffusion equation (NBDE) with schematic initial conditions account for the fast local equilibration of gluons in relativistic heavy-ion collisions. The exact solutions are achieved through a nonlinear transformation that was proposed in Ref. [1], but in addition, include the singularity at $\epsilon=\mu<0$, and boundary conditions at the singularity. As a consequence, the analytic time-dependent solutions asymptotically approach the Bose-Einstein distribution not only in the UV, but also in the IR. Calculations are performed with a local equilibration time of $\tau_\text{eq}\simeq 0.1$ fm/$c$ and a local temperature of the order of 600 MeV in the initial stages of Pb-Pb collisions at energies reached at the Large Hadron Collider (LHC). The nonlinear NBDA solutions are suited to replace the conventional linear relaxation-time approximation that enforces equilibration from the initial nonequilibrium to the thermal distribution.
[1] G. Wolschin, Physica A 499, 1 (2018), and preprint (2020).
Contribution type | Contributed Talk |
---|---|
Track | Initial State |