21–29 Aug 2019
Europe/Athens timezone
ICNFP 2019 follows HiX 2019 (also at the OAC), Int. Workshop devoted to Nucleon Structure at Large Bjorken-x (https://indico.cern.ch/event/799284/overview). Related ICNFP Session organized with HiX 2019 convenors will take place the 22-23 August

Evaluation of target non-uniformity and dispersion effects on energy measurement resolution in NUMEN experiment

26 Aug 2019, 16:30
30m
Room 2

Room 2

Oral Presentation Workshop on Heavy Ion Physics

Speaker

Federico Pinna

Description

In the NUMEN Experiment, a number of double Exchange reactions will be studied in order to get very precise measurements of their cross sections and final state levels. The interest for these reactions lies in the possibility for some nuclides, to have DCE with initial and final states identical to those of the Neutrino-less Double Beta Decay [1]. To reach a good precision in the energy measurements, high statistics is needed and severe constraints about the target thickness must be satisfied. The main sources of error are the straggling of projectiles and products and the dispersion effect inside the target. Both are related to the target thickness, which must be of the order of few hundreds nanometre. Moreover, the thickness uniformity plays a crucial role in the spread of the energy. The solution to these problems has been found by designing a target as a target isotope deposition on a substrate of special graphite (HOPG) [2], whose thermodynamic properties fit the cooling requirements [3]. The results of the chosen deposition technique (Electron Beam) for 116Sn, 130Te, 76Ge isotopes will be illustrated in terms of electron microscopy (FESEM) images. A more precise quantitative evaluation of the thickness distribution has been performed by Rutherford Back Scattering (RBS) and alpha-transmission measurements. The latter one allows to estimate also the thickness uniformity. In addition, a Montecarlo code has been implemented, aiming to estimate the precision of the measurements of the final states nuclear levels. The Montecarlo results will be reported in the talk for all the targets, together with the results of the tests of thickness and thickness uniformity, obtained with the above mentioned techniques.

[1] Cappuzzello F. et al., Eur. Phys. J. A, 54 (2018) 72, https://doi.org/10.1140/epja/i2018-12509-3
[2] F. Pinna et al., Design and test of an innovative static thin target for intense ion beams, Il Nuovo Cimento (2018), in press.
[3] V. Capirossi et al., Nucl. Instr, and Meth. in Phys. Res. A, (2018), in press. 2 https://doi.org/10.1016/j.nima.2018.08.081

Primary author

Federico Pinna

Co-authors

Vittoria Capirossi (INFN - National Institute for Nuclear Physics) Franck Delaunay (LPC Caen) felice Iazzi (Politecnico di Torino) Daniela Calvo (INFN - National Institute for Nuclear Physics) Maria Fisichella (INFN sezione di Torino) Valentino Rigato (LNL - Laboratori Nazionali di Legnaro)

Presentation materials