Speaker
Description
Superconducting radio frequency (SRF) cavities are traditionally cooled by immersion in liquid helium, which enforces building and operating complex cryogenic infrastructure. A simpler alternative for cooling the cavities is to conductively couple the cavities with closed-cycle regenerative cryocoolers. In this contribution, we will showcase the development of an experimental setup for demonstrating liquid helium free operation of SRF cavities. The setup comprises a high-purity aluminum link that connects an SRF cavity to a 4 K pulse tube cryocooler, a magnetically shielded cryostat assembly, and a RF driver with phase-locked loop for measuring the cavity performance parameters. We will also present the proof-of-principle accelerating gradients measured on single cell 650 MHz and 1.3 GHz SRF cavities with conduction cooling and discuss pathways to achieve accelerating gradients that are practical for industrial applications.