Conveners
C2Po1C - Aerospace Cryocooler II
- Susan Breon (NASA)
- Sangkwon Jeong (KAIST)
Hybrid J-T cooler has been the most commonly used 4K cryocooler in space detectors. Although resistance of the J-T valve deeply affects the performance of the J-T cooler, few researches have been down especially on the J-T orifice. Because the J-T process is quite complicate, the dimensionless resistance coefficient is defined and deduced using dimensional analysis method to evaluate the...
Future astrophysics missions such as SPICA, Athena or LiteBird will need a cooling down below 1 K (until 50 mK) to achieve the detectors required sensibility. To address such requirements, cooling chains are build coupling several technologies using intermediate temperatures cooling.
A high cooling power at 15 K is then essential, so the CEA-SBT designed a Pulse Tube cooler system providing...
Miniaturized cryocooler systems are among the key components of state-of-art infrared sensing small satellites (SmallSats). To achieve small size, these cryocoolers need to operate at high frequencies, e.g., 200 to 300 Hz range. High frequency leads to lower compression and expansion swept volumes and hence a smaller cryocooler. Previously we showed that pulse tube cryocoolers have high...
Shanghai Institute of Technical Physics (SITP) of the Chinese Academy of Sciences (CAS) has been engaging in the development of space long-life cryocooler for over 30 years. The three typical cryocooler (pneumatic Stirling cooler, Stirling cooler and pulse tube cooler) were all developed simultaneously. In 2002, a self-developed pneumatic Stirling cryocooler operated in orbit successfully in...