Conveners
M1Or2A - A15 Conductors
- Herman Ten Kate (CERN)
- David Larbalestier (National High Magnetic Field Laboratory)
Binary and ternary ZrO2-doped tube-type Nb3Sn wires were prepared by Hyper Tech Research Inc. for this study to investigate the effect of nanoparticle doping on the wire performance, with the aim of reaching the FCC 16T dipole-magnets requirements. The specimen, monofilamentary and multifilamentary wires, were characterized by magnetisation measurements in order to evaluate their critical...
Nb3Sn is a low-temperature superconductor that had been believed to have very limited room for further improvement. However, the development of Nb3Sn wires with artificial pinning centers (APC) in recent years shows that Nb3Sn conductors can still be significantly improved. The most recent APC wires, in which Nb-Zr is internally oxidized to form ZrO2 particles, have achieved non-Cu Jc values...
Hyper Tech has developed the tube type strands with and without artificial pinning center (APC). For the regular tube type strands, our standard conductor with 217 filament arrays have been generated with 12 T non-Cu Jc values of about 2400-2500 A/mm2 with filament size of 35 micros at the 0.7 mm strand. We also made 547 filament conductors with 12 T non-Cu Jc values of about 2000-2200 A/mm2...
Nb3Sn conductors have been made which incorporate ZrO2 artificial pinning centers (APCs) that serve to refine the grain size of the superconducting material. Work on these wires has resulted in conductors which approach the FCC specification of Jc of 1500 A/mm2 at 16 T and 4.2 K. Understanding the causes of high Jc at mid to high...
Recent advances in Nb3Sn to meet the very demanding FCC specification of Jc greater than 1500A/mm2 (4.2K, 16T) has led to the development of an Nb-Ta-Hf alloy, which has indicated high layer Jc’s of 3700A/mm2 are possible. This high Jc translates to a non-Cu Jc of 2200A/mm2 in an RRP® configuration. The reason for this high Jc (16T,4.2K) is because the irreversibility field of (Nb-Ta)3Sn is...