Conveners
M3Or3C - Focus Series D: Quantum Computing II
- Joseph Bardin (University of Massachusetts Amherst)
- Long Nguyen (University of Maryland, College Park)
While the energy relaxation times (T1) of superconducting qubits have improved greatly since the birth of the field, much work remains to better understand the limitations on lifetimes and how best to extend them. It is widely observed that qubits exhibit time-dependent fluctuations of their T1 times, but the main sources of this process remain a mystery. Among the leading candidates are...
Dissipation engineering has emerged in recently years as a promising way to allow efficient control of complex quantum systems. The key ingredient for such dissipative quantum control is to synthesize non-trivial dissipation operators (jump operators), such as linear superposition of photon loss in two oscillators or (nonlinear) two-photon loss in one oscillator. In this talk we present...
Superconducting qubit designs with topological protection against local noise hold the promise of significantly increased coherence times and higher gate fidelities than is possible with conventional qubits. We are developing one such protected qubit design — the hybrid charge-parity qubit — that combines arrays of conventional Josephson junctions and high, but not extraordinarily high,...
Superconducting qubits are an attractive candidate for building quantum information processors. However, existing control techniques do not scale well to large multi-qubit arrays. A promising candidate for scalable control is the Single Flux Quantum (SFQ) digital logic family. In an initial single-chip implementation, the fidelity of SFQ-based qubit gates was limited by quasiparticle (QP)...