Future silicon trackers will be operated in an intense radiation environment and require large volume of data to be transmitted off detector. In addition, the optical modules must be of low mass in order to limit multiple scattering and nuclear interactions that would degrade the overall performance of the detector. We will present a miniature optical engine that satisfies these constraints....
We have developed a series of front-end ASICs with spectroscopic capability for hard X-ray and gamma-ray imaging applications. Our latest ASIC, the “KW04H64” is designed for in-vivo molecular imaging, in which molecules are labeled with radioisotopes and injected into a small animal and their distribution in a body is detected externally. It requires a radiation detector that has good spatial...
We report the fabrication process and characterization of our novel n+/p-/p+ pixel detectors made on 150mm diameter p-type Magnetic Czochralski silicon (p-MCz Si) wafers. The pixels were segmented 52 × 80 dual column and designed to be AC capacitive coupled. The resistive coupling, allowing Quality Assurance (QA) probing prior the Flip-Chip bonding, between pixels was realized by thin film...
CR-RCn shaping circuits and analog-to-digital converters (ADCs) are widely used to process the front-end pulse from detectors in high energy physics. Recovering the information from ADC sampling points can be formulated as a regression problem. Traditional methods (least square fitting, Kalman filtering, etc.) are statistically optimal with linear model and Gaussian noise, whereas non-ideal...