The ATLAS experiment at Large Hadron Collider (LHC) will replace its inner tracker system to cope with the extreme particle fluence expected after the High Luminosity upgrade of the accelerator (HL-LHC).
The 3D silicon sensor technology has been selected as baseline to instrument the innermost layers of the pixel detector in the future ATLAS Inner Tracker (ITk).
A new generation of 3D pixel...
The High Luminosity upgrade of the CERN Large Hadron Collider (HL-LHC) calls for new high-radiation tolerant silicon pixel sensors, capable of withstanding, in the innermost tracker layer, fluences up to 2.3E16 neq/cm2 (1MeV equivalent neutrons). An extensive R&D program aiming at 3D pixel sensors, built with a top-side only process, has been put in place in CMS in collaboration with FBK...
Detectors based on Chemical Vapor Deposition (CVD) diamond have been used
extensively and successfully in beam conditions/beam loss monitors as the
innermost detectors in the highest radiation areas of Large Hadron Collider
(LHC) experiments. For future experiments at CERN it is expected that
the innermost detectors will accumulate an order of magnitude larger
fluence than present...
As the luminosities produced by particle collider experiments increase in the next few years, increasing the pile up, the tracking detectors in these experiments will require improved spatial and timing resolution to distinguish between different tracks as well as having the required radiation hardness to survive for the duration of the experiment. 3D sensors have already been proven as a...