Conveners
WIMP Models/Detection 2
- Michael Fedderke (Stanford University)
We present an approach to measure the Milky Way (MW) potential using the angular accelerations of stars in aggregate as measured by astrometric surveys like Gaia. Accelerations directly probe the gradient of the MW potential, as opposed to indirect methods using e.g. stellar velocities. We show that end-of-mission Gaia stellar acceleration data may be used to measure the potential of the MW...
Cosmic-ray antiprotons are a remarkable diagnostic tool for the study of astroparticle physics’ processes in our Galaxy. While the bulk of measured antiprotons is consistent with a secondary origin, the precise data of the AMS-02 experiment provides us with encouraging prospects to search for a subdominant primary component, e.g. from dark matter. In this presentation, we discuss limits on...
Recent weak lensing surveys have revealed that the direct measurement of the parameter combination S8 = σ8 (Ωm/0.3)^0.5-- measuring the amplitude of matter fluctuations on 8 Mpc/h scales -- is ∼3σ discrepant with the value reconstructed from cosmic microwave background (CMB) data assuming the ΛCDM model. In this talk, I discuss that it is possible to resolve the tension if dark matter (DM)...
abstract : Decay of the inflaton or moduli which dominated the energy density of the universe at early times leads to a matter to radiation transition epoch. We consider nonthermal sterile dark matter (DM) particles produced as decay product during such transitions. The particles have a characteristic energy distribution—that associated with decays taking place in a matter dominated universe...
As luminous tracers of small dark matter halos, ultra-faint dwarf galaxies offer a unique window into dark matter physics. In this talk, I will describe how our census of these faint systems places stringent constraints on microphysical dark matter properties including its warmth, Standard Model couplings, and de Broglie wavelength. I will also describe recent work that combines dark matter...
Self-Interacting Dark Matter (SIDM) is a lucrative candidate to address the small-scale issues faced by the collisionless cold dark matter. We propose that the collisional nature of the SIDM particles on the small scales can lead to dissipative effects. We estimate the shear and bulk viscosity of SIDM using the kinetic theory in relaxation time approximation. We investigate the effect of SIDM...