Conveners
WG 1
- Jian Tang (Sun Yat-Sen University)
WG 1
- Adam Jude Aurisano (University of Cincinnati (US))
WG 1
- Jian Tang (Sun Yat-Sen University)
WG 1
- Neil McCauley (University of Liverpool)
NOvA is a long-baseline neutrino oscillation experiment. Its large tracking calorimeters
can detect and identify muon and electron neutrino interactions with high efficiency.
Neutrinos produced by the NuMI beam are detected by a near detector, located at Fermilab,
and a much larger far detector, located 810 km away in Ash River, Minnesota. NOvA can
measure the electron neutrino and...
The Deep Underground Neutrino Experiment (DUNE) is a next generation, long-baseline neutrino oscillation experiment which will utilize high-intensity $\nu_{\mu}$ and $\bar{\nu}_{\mu}$ with peak neutrino energies of ~2.5 GeV produced at Fermilab, over a 1285 km baseline, to carry out a detailed study of neutrino mixing. The neutrino beam has an initial design intensity of 1.2 MW, but has a...
Neutrino oscillation physics is entering the precision measurement
era. The focus of next generation neutrino experiments will be to
determine the parameters governing neutrino oscillations precisely.
The Hyper-Kamiokande experiment, currently under construction in
Japan, includes a long-baseline neutrino oscillations program. Its
main goals will be to determine whether CP violation...
The Jiangmen Underground Neutrino Observatory (JUNO) is a 20 kton liquid scintillator detector that will study reactor antineutrinos emitted from two nuclear power plants in the south of China at a baseline of about 53 km. Thanks to its 2 photon detection systems (18000 20” PMTs and 25600 3” PMTs), JUNO will achieve an unprecedented 3% energy resolution at 1 MeV with an energy scale...
The latest data of the two long-baseline accelerator experiments NOνA and T2K, interpreted in the standard 3-flavor scenario, display a discrepancy. A mismatch in the determination of the standard CP-phase $\delta_{CP}$ extracted by the two experiments is evident in the normal neutrino mass ordering. While NOνA prefers values close to $\delta_{CP}$ ∼ $0.8\pi$, T2K identifies values of...
In this work, an analytical expression for appearance probability has been derived for neutrino (anti-neutrino) oscillations in matter, including non-standard interactions (NSI-propagation). We consider two NSI parameters $\epsilon_{e\mu}$ and $\epsilon_{e\tau}$ to obtain the expression for $\nu_{\mu}\rightarrow\nu_{e}$ ( $\bar{\nu}_{\mu}\rightarrow\bar{\nu}_{e}$) transition, relevant to the...
Super-Kamiokande is a 50 kton water Cherenkov detector located in Gifu, Japan. The detector has been running for 25 years in 6 distinct phases: SK-I to SK-V and most recently SK-Gd; in this time, it has accumulated a large dataset of atmospheric neutrinos.
The atmospheric neutrinos detected at Super-K cover a wide range of energies and path lengths and travel through various amounts of...
The DeepCore sub-array within the IceCube Neutrino Observatory is a densely instrumented detector embedded in the Antarctic ice designed to observe atmospheric neutrino interactions above 5 GeV via Cherenkov radiation. At these energies, Earth-crossing muon neutrinos have a high chance of oscillating to tau neutrinos. These oscillations have been previously observed in DeepCore through both...
The ESSνSB project proposes to base a neutrino ”Super Beam” of unprecedented luminosity at the European Spallation Source. The original proposal identified the second peak of the oscillation probability as the optimal to maximize the discovery potential to leptonic CP violation. However this choice reduces the statistics at the detector and penalizes other complementary searches such as the...
The KM3NeT/ORCA detector is a next-generation neutrino telescope on the bottom of the Mediterranean Sea. With a sensitivity optimized for atmospheric neutrinos between 1\,GeV to 100\,GeV, this detector will offer competitive sensitivity for measuring the neutrino mass ordering, as well as $\theta_{23}$ and $\Delta m^2_{23}$.
Currently under construction, 6 of the 115 planned Detection Units...
The near future of neutrino oscillation physics will be marked with precision measurements on the standard neutrino mixing parameters. MOMENT introduces a novel method to produce a high-intensity low-energy muon-decay-based neutrino beam, which is ideal to study neutrino oscillations at medium distance. In this talk, we review the general prospects of MOMENT at the precision measurement of the...
The flagship measurement of the JUNO experiment is the determination of the neutrino mass ordering. Here we revisit the prospects of the JUNO experiment to make this determination by 2030, using the current global knowledge of the relevant neutrino parameters as well as current information on the reactor configuration and the critical parameters of the JUNO detector.
We pay particular...
Over the last two decades, the experimental understanding of three flavor oscillations has improved dramatically. However, almost all of our understanding of neutrino physics is due to the study of electron and muon neutrinos, and the tau neutrino remains the least well-studied particle in the Standard Model.
The Deep Underground Neutrino Experiment (DUNE) is a next-generation neutrino...
The Hyper-Kamiokande (HK) experiment will perform a broad physics program including the study of long-baseline neutrino oscillations. This will be achieved by detecting neutrinos produced at an upgraded 1.3 MW beam at the J-PARC with a far water Cherenkov detector which will have about 8 times larger detector volume than that of the Super-Kamiokande detector, following the successful T2K...
Matter effect plays a pivotal role in the upcoming Deep Underground Neutrino Experiment (DUNE) to address pressing fundamental issues such as leptonic CP violation, neutrino mass hierarchy, and precision measurements of the oscillation parameters in the precision era. In this paper, for the first time, we explore in detail the capability of DUNE to establish the matter oscillation as a...
Reactor experiments are well suited to probe the possible loss of coherence of neutrino oscillations due to wave-packets separation. We will first comment on how decoherence modifies neutrino oscillation probabilities. Then we will turn our attention to the reactor experiments RENO, Daya Bay and KamLAND and discuss how well these experiments can constrain decoherence effects. We will finally...
Quantum decoherence in neutrino oscillations was theorized almost 50 years ago, however there is still no clear theoretical understanding of this phenomenon, there is not even agreement on whether or not it could be observed at all.
Treating all particles, including the source and detector, consistently in QFT, we study a model where the decoherence emerges from the time evolution of the...