Speakers
Description
High statistics data sets from experiments at RHIC and the LHC with small and large collision species have enabled a wealth of new flow measurements, including the event-by-event correlation between observables. One exciting such observable $\rho$($v^2_n$,[$p_T$]) gauges the correlation between the mean transverse momentum ($p_T$) of particles in an event and the various flow coefficients ($v_n$) in the same event. Recently it has been proposed that very low multiplicity events may be sensitive to initial-state glasma correlations rather than flow-related dynamics. We find utilizing the IP-JAZMA framework that the color domain explanation for the glasma results are incomplete. We then explore predictions from PYTHIA-ANGANTYR having only non-flow correlations and AMPT having both non-flow and flow-type correlations. We find that PYTHIA-ANGANTYR has non-flow contributions to $\rho$($v^2_n$,[$p_T$]) in $p$+O, $p$+Pb, O+O collisions that are positive at low multiplicity and comparable to the glasma correlations. It is striking that in PYTHIA-8 in $pp$ collisions there is actually a sign-change from positive to negative $\rho$($v^2_n$,[$p_T$]) as a function of multiplicity. The AMPT results match the experimental data general trends in Pb+Pb collisions at the LHC, except at low multiplicity where AMPT has the opposite sign. In $p$+Pb collisions, AMPT has the opposite sign from experimental data and we explore this within the context of parton geometry. In this presentation, we will discuss the detailed model study on the $v_n$-$p_T$ correlation in [Phys. Rev. C 103, 064906 (2021)]