Conveners
Quantum Information & Computing
- Celeste Torkzaban
Quantum Information & Computing
- Carmelo Mordini (ETH Zurich)
Quantum Information & Computing
- Zachary Smith (Air Force Research Lab)
Quantum Information & Computing
- Gabriel Araneda (University of Oxford)
Pairing integrated photonics with surface-electrode ion traps is an emerging technology, potentially opening the way to build novel architectures for quantum information processing [1, 2, 3]. Other than solving the scalability issues presented by individual addressing of multiple ions with free-space laser setups, it allows engineering the optical fields coupled to the ions and hence...
Free-space optical lattices are ubiquitous in atomic physics and are often employed for creating spin-dependent forces used for entangling gate operations and neutral atom trapping. Recently, there has been an interest in gaining control over the absolute phase of the optical lattice [1] and harnessing it for applications in quantum metrology, quantum information processing with continuous...
In trapped-ion systems, the majority of entangling operations are implemented in the adiabatic regime [1,2]. Adiabatic in this context means that we can selectively excite a single set of terms in the Lamb-Dicke expansion and are able to neglect the remaining off-resonant terms. Then only a single motional mode (with secular frequency $\nu$) participates in the interaction. This is possible if...
We investigate scalable surface ion traps for quantum simulation and quantum computing. We have developed a microfabricated surface trap consisting of two parallel linear trap arrays with 11 trapping sites each. The trap design requires two interconnected metal layers to address the island-like DC electrodes and a third to shield the substrate.
The trap fabrication is carried out by...
A future quantum computer will potentially outperform a classical computer in certain tasks, such
as factorizing large numbers [1]. A promising platform to implement a quantum computer are trapped
ions, as long coherence time, high fidelity quantum logic gates and the implementation of quantum
algorithms, such as the shore algorithm, have been demonstrated [2], [3]. To evolve trapped...
In order to manipulate quantum information in trapped ion systems it is necessary to mediate the interaction between qubits with electromagnetic fields in a precisely controlled fashion. As ion crystals become larger and enhanced fidelities demand increasingly sophisticated pulse schemes, dynamic signal generation for quantum gates becomes a difficult task.
The talk discusses various...
Research groups in a wide range of disciplines at the Leibniz Universität Hannover, the Physikalisch-Technische Bundesanstalt (PTB) Braunschweig, and the Technische Universität Braunschweig are working together in the newly-created Quantum Valley Lower Saxony to create a trapped-ion quantum computer with fully interconnected qubits. A pair of existing trapped-ion experiments, one at LUH and...
Trapped ions are a leading platform for quantum computing due to the long coherence time, high-level of control of internal and external degrees of freedom, and the natural full connectivity between qubits. Single and multi-qubit operations have been performed with high fidelity (>99.9%), which has enabled the demonstration of small universal quantum computers (∼10 atoms). However, scaling...
Private communication over shared network infrastructure is of fundamental importance to the modern world. In classical cryptography, shared secrets cannot be created with unconditional security; real-world key exchange protocols rely on computational conjectures such as the hardness of prime factorisation to provide security against eavesdropping attacks. Quantum theory, however, promises...
Trapped atomic ions are one of the most promising quantum computing architectures. They exhibit all of the primitives necessary for building a quantum computer and have very few fundamental limitations to the achievable gate fidelities. While high-fidelity quantum logic has already been demonstrated on a small number of qubits, scaling up the system without compromising its...
Laser cooled and trapped atomic ions are promising platforms for quantum networking, sensing, and information processing because they are quantum systems well isolated from their surrounding environment. The species and isotope selected for trapping have different properties. Nuclear spin $I=\frac{1}{2}$ isotopes have long coherence times for a ground-state hyperfine qubit with robust...