Help us make Indico better by taking this survey! Aidez-nous à améliorer Indico en répondant à ce sondage !

9–13 May 2022
CERN
Europe/Zurich timezone

CBM performance for (multi-)strange hadron measurements using Machine Learning techniques

13 May 2022, 11:25
5m
500/1-001 - Main Auditorium (CERN)

500/1-001 - Main Auditorium

CERN

400
Show room on map
Lightning talk Workshop

Speaker

Shahid Khan

Description

The Compressed Baryonic Matter (CBM) experiment at FAIR will investigate the QCD phase diagram at high net-baryon density ($µ_{B} > 400$ MeV) in the energy range of $\sqrt{s_{NN}}$ = 2.7−4.9 GeV. Precise determination of dense baryonic matter properties requires multi-differential measurements of strange hadron yields, both for most copiously produced kaons and $\Lambda$ as well as for rare (multi-)strange hyperons and their anti-particles.
In this presentation, the CBM performance for the multi-differential yield measurements of strange hadrons ($K_{s}^{0}$, $\Lambda$, and $\Xi^{-}$) will be reported. The strange hadrons are reconstructed via their weak decay topology using the Kalman Filter algorithm. Machine Learning techniques, such as XGBoost, are used for non-linear multi-parameter selection of weak decay topology, resulting in high signal purity and efficient rejection of the combinatorial background. Yield extraction and extrapolation to unmeasured phase space is implemented as a multi-step fitting procedure, differentially in centrality, transverse momentum, and rapidity at different collision energies. Variation of the analysis parameters allows to estimate systematic uncertainties. A novel approach to study feed-down contribution to the primary strange hadrons using Machine Learning algorithms will also be discussed.

Primary authors

Andrea Dubla (GSI) Shahid Khan Ilya Selyuzhenkov (GSI, Darmstadt) Oleksii Lubynets (Taras Shevchenko National University of Kyiv (UA)) Viktor Klochkov (GSI)

Presentation materials