Speaker
Description
Two-particle correlations are used to extract the space-time and dynamical information of the particle-emitting source created in heavy-ion collisions. The source radii extracted from these correlations characterize the system at the kinetic freeze-out, i.e., the last stage of particle interactions. Kaons can provide a more direct view of the particle-emitting source than pions as they have smaller hadronic cross section and less contribution from long lifetime resonances.
In this poster, the measurements of $K^{+}K^{+}$ correlation functions in Au+Au collisions at $\sqrt{s_{NN}}$ = 3.0, 3.2, 3.5, and 3.9 GeV recorded by the STAR experiment will be presented. One-dimensional source size $(R_{inv})$ and correlation strength parameter ($\lambda$) of the system are extracted from the correlation functions using the Bowler-Sinyukov formula. The comparison of the measured radii with the predictions from UrQMD+CRAB will be discussed.
Category | Experiment |
---|---|
Collaboration (if applicable) | from RHIC-STAR |