Speaker
Description
Hypernuclei, bound states of nucleons and hyperons, serve as a natural laboratory to investigate the hyperon-nucleon ($Y$-$N$) interaction, which is an important ingredient for the nuclear equation-of-state. Furthermore, precise measurements of their production yields in heavy-ion collisions are crucial for understanding their production mechanisms. In addition, the strangeness population factor, $S_{\rm 3}=(^{3}_{\Lambda}\mathrm{H}/^{3}\mathrm{He})/(\Lambda/p)$, is of particular interest as it has been suggested to be sensitive to baryon-strangeness correlations and the onset of deconfinement.
The STAR Beam Energy Scan II program provides a unique opportunity to investigate the collision energy and system size dependence of hypernuclei production. In this poster, we present new measurements on the transverse momentum and centrality dependence of $\rm ^{3}_{\Lambda}H$ yields in Au+Au collisions from $\sqrt{s_{NN}}=7.7$ to $27$ GeV. The $\rm ^{3}_{\Lambda}H/\Lambda$ ratio and $S_{3}$ will be presented as functions of collision energy and centrality. These results are compared to model calculations, and their physics implications will be discussed.
Category | Experiment |
---|---|
Collaboration (if applicable) | STAR collaboration |