Speaker
Description
The quark-hadron transition that happens in ultra-relativistic heavy-ion collisions is expected to be influenced by the effects of rotation and magnetic field, both present due to the geometry of a generic non-head-on impact. We augment the conventional $ T$--$\mu_B$ planar phase diagram for QCD matter by extending it to a multi-dimensional domain spanned by temperature $T$, baryon chemical potential $\mu_B$, external magnetic field $B$ and angular velocity $\omega$. Using two independent approaches, one from a rapid rise in entropy density and another dealing with a dip in the speed of sound, we identify deconfinement in the framework of a modified statistical hadronization model. We find that the deconfinement temperature $T_C(\mu_B,\omega,eB)$ decreases nearly monotonically with increasing $ \mu_B, \omega $ and $ eB $ with the most prominent drop (by nearly $40$ to $50$ MeV) in $T_C$ occurring when all the three quasi-control (collision energy and impact parameter dependent) parameters are simultaneously tuned to finite values that are typically achievable in present and upcoming heavy-ion colliders.
Category | Theory |
---|