Speaker
Description
The $f_0(980)$ is a candidate exotic hadron, first observed by $\pi\pi$ scattering in the 1970’s. Its configuration still remains controversial— it can be a normal $s\bar{s}$ meson, a tetraquark $s\bar{s}q\bar{q}$ state, a $q\bar{q}g$ hybrid, or a $\mathrm{K}\bar{\mathrm{K}}$ molecule. Relativistic heavy ion collisions are in a unique position to identify the $f_0(980)$ quark content by the empirical NCQ (number of constituent quarks) scaling of elliptic flow $v_{2}$. In this talk, we present the first reconstruction of $f_0(980)$ via its main decay channel, $f_0(980) \to\pi^+\pi^-$, using proton-lead collisions recorded by the CMS experiment at 8.16 TeV. The $f_0(980)$ yield is studied as a function of the azimuthal angle relative to the event plane, reconstructed from the forward hadron calorimeters, to extract the $v_{2}$ parameter. The $v_{2}$ of the $f_0(980)$ is then compared to $v_{2}$ values from other hadrons to infer in a novel way the quark content of the $f_0(980)$.
Category | Experiment |
---|---|
Collaboration (if applicable) | CMS |