3–9 Sept 2023
Hilton of the Americas, 1600 Lamar, Houston, Texas, 77010, USA
US/Central timezone

Electromagnetic radiation in pp and Pb--Pb collisions with dielectrons in ALICE

5 Sept 2023, 16:10
20m
Ballroom D (Hilton of the Americas)

Ballroom D

Hilton of the Americas

Oral EM Probes EM Probes

Speaker

Daiki Sekihata (University of Tokyo (JP))

Description

Electromagnetic probes such as photons and dielectrons (e$^{+}$e$^{-}$ pairs) are a unique tool to study the space-time evolution of the hot and dense matter created in ultra-relativistic heavy-ion collisions. They are produced at all stages of the collision with negligible final-state interactions. At intermediate dielectron invariant mass ($m_{\rm ee} > 1$ GeV/$c^{2}$), thermal radiation from the quark-gluon plasma carries information about the early temperature of the medium. At LHC energies, it is however dominated by a large background from correlated heavy-flavour hadron decays. At smaller $m_{\rm ee}$, thermal radiation from the hot hadronic phase contributes to the dielectron spectrum via decays of $\rho$ mesons, whose spectral function is sensitive to chiral-symmetry restoration. Finally, at vanishing $m_{\rm ee}$, the real direct photon fraction can be extracted from the dielectron data. In pp collisions, such measurement in minimum bias events serves as a baseline and a fundamental test for perturbative QCD calculations, while studies in high charged-particle multiplicity events allow one to search for thermal radiation in small colliding systems. The latter show surprising phenomena similar to those observed in heavy-ion collisions.
In this talk, final ALICE results, using the full data sample collected during the LHC Run 2, will be presented. They include measurements of the dielectron and direct-photon production in central Pb--Pb at the centre-of-mass energy per nucleon pairs, $\sqrt{s_{\rm NN}}$, of 5.02 TeV, as well as of direct photons in minimum bias and high-multiplicity pp collisions at $\sqrt{s} = 13$ TeV. Finally, first results with the Run 3 pp data at $\sqrt{s} = 13.6$ TeV, using the upgraded ALICE detector to disentangle the different dielectron sources, will be reported.

Category Experiment
Collaboration (if applicable) ALICE

Primary author

Daiki Sekihata (University of Tokyo (JP))

Presentation materials

Peer reviewing

Paper