In this poster, PHENIX presents a proof of principle study for the measurement of prompt and non-prompt $e^{+}e^{-}$ pair production in the intermediate mass range ($m_{\phi}$ $<$ $m_{ee}$ $<$ $m_{J/\psi}$) using $p$+$p$ data at 200 GeV taken in 2015. PHENIX plans to extend the measurement to the high statistics Au+Au data-set recorded in 2014 and 2016, with the goal to isolate the expected...
In this contribution we present results on the dielectron production in $Ag+Ag$ collisions (0-40% centrality) and $p+p$ interactions at $1.58 \, AGeV$ beam energy measured with the High Acceptance DiElectron Spectrometer (HADES). The HADES RICH detector has been upgraded with a new photon detection camera which strongly enhances the electron efficiency and...
By comparing the particle production in pp and p--Pb collisions, nuclear initial state effects can be studied. Measurements of the $\omega$ meson $p_\text{T}$-spectra in pp and p--Pb collisions not only allow for a determination of the nuclear modification factor $R_\text{pA}$, but also provide insight into the fragmentation process and serve as vital input for direct-photon cocktail...
On the gravitational wave emission in the magnetic field
of a heavy-ion collision
In the classic 1961 paper of Gertsenshtein [1] he demonstrated that an electromagnetic wave can be transformed into a gravitational wave when propagating through an external, transverse magnetic field. Later in 1973, Zel’dovich calculated the fraction of energy of the electromagnetic wave transformed into the...
In heavy ion collisions, the measured spectrum of direct photons at RHIC and the LHC has been found as azimuthally anisotropic as pions. In particular, a large elliptic flow of the direct photos has been observed, which strongly contradicts conventional theoretical predictions, leading to the well-known “direct photon puzzle”.
In this talk, instead of a strong magnetic field assumption...
Dielectrons are an exceptional tool to study the evolution of the medium created in heavy-ion collisions. In central collisions, the energy densities are sufficient to create a quark-gluon plasma (QGP). Thermal e$^{+}$e$^{-}$ pairs with invariant masses around 1.5 GeV/$c^{2}$ can be used to estimate the early average temperature of the QGP.
At LHC energies, the cross section of...