Conveners
Chirality: (1)
- Dirk Rischke
Chirality: (2)
- huan huang
The observation of hyperon polarization has revealed the existence of large vorticities in the medium created by heavy-ion collisions. Global polarization indicates vorticities perpendicular to the reaction plane due to the system's orbital angular momentum. The difference of global polarization between $\Lambda$ and $\bar{\Lambda}$ hyperon can provide essential insights into the late-stage...
The interplay of the chiral anomaly and the strong magnetic or vortical field created in the off-central heavy-ion collisions can give rise to anomalous chiral effects in the quark--gluon plasma. These include the Chiral Magnetic Effect (CME), the Chiral Magnetic Wave (CMW) and the Chiral Vortical Effect (CVE). The study of these novel phenomena is of fundamental significance since they may...
Hydrodynamics provides quantitative descriptions of various flow measurements in heavy-ion collisions, suggesting the strongly-coupled nature of the hot QCD matter. A ubiquitous phenomenon in fluid dynamics is the formation of vortex rings. In heavy-ion collisions, different conditions can give rise to toroidal vortex structure in the QGP medium, such as the medium's response to jet...
The global spin alignment of particles produced in heavy-ion collisions can reveal valuable information about the strong force field and the properties of the quark-gluon plasma. The STAR collaboration recently observed a large global spin alignment of $\phi$-mesons in Au+Au collisions using the data from the first phase of the RHIC Beam Energy Scan program (BES-I) [1]. This cannot be...
Over the past decade, considerable research effort has focused on investigating macroscopic consequences of anomalies in quantum field theories. In particular, chiral matter is expected to exhibit novel transport phenomena arising from the interplay between quantum anomalies and electromagnetic and vortical fields [1]. In order to study these effects in fluid systems like the quark-gluon...
The polarization of the $\Lambda$ particle offers the unique opportunity to study the hydrodynamic gradients in the Quark-Gluon Plasma formed in heavy-ion collisions. However, the theoretical formula commonly used to calculate polarization is only a linear order expansion in thermal vorticity and neglects higher-order terms. Here, we present an exact calculation at all orders in (constant)...
We modify the hydrodynamic equations of a relativistic chiral plasma to account for dissipative effects due to QCD sphaleron transitions. By analyzing the linearized hydrodynamic equations, we show that sphaleron transitions lead to nontrivial effects on vector and axial charge transport phenomena in the presence of a magnetic field. Notably, dissipative effects of sphaleron transitions lead...
We present a study of flow and hyperon polarization observables at RHIC BES energies in a MUlti Fluid simulation for Fast IoN collisions (MUFFIN) model. MUFFIN is based on a multi-fluid approach to relativistic heavy-ion collisions, and treats the initial stage of heavy-ion reaction as mutual inter-penetration of baryon-rich fluids. It is implemented from scratch with the use of a versatile...
The STAR Collaboration has reported results from a blind analysis of isobar collisions (${^{96}_{44}\text{Ru}}+{^{96}_{44}\text{Ru}}$, ${^{96}_{40}\text{Zr}}+{^{96}_{40}\text{Zr}}$) at $\sqrt{s_{\mathrm{NN}}}=200$ GeV on the search for the chiral magnetic effect (CME). Significant differences were observed in the measured multiplicity ($N$) and elliptic anisotropy ($v_{2}$) between the two...