25–29 Jun 2023
Ole-Johan Dahls Hus
Europe/Oslo timezone

P2.12: The R&D of The Glass Scintillator for Nuclear Detection

28 Jun 2023, 16:51
1m
Ole-Johan Spiseri (Ole-Johan Dahls Hus)

Ole-Johan Spiseri

Ole-Johan Dahls Hus

Ole Johan Dahls Hus - Oslo Science Park Gaustadalléen 23B, 0373 Oslo

Speaker

Sen Qian

Description

Scintillation materials can convert high-energy rays into visible light. Generally, solid scintillator can be divided into crystal scintillator, plastic scintillator, glass scintillator and ceramic scintillator. Compared with crystal scintillator, the glass scintillator has many advantages, such as a simple preparation process, low cost and continuously adjustable components. Therefore, glass scintillator has long been conceived for application in the nuclear detection such as hadron calorimeters, the HCAL of CEPC. In 2021, the researchers in the Institute of High Energy Physics (IHEP) have set up the Large Area Glass Scintillator Collaboration (GS group) to study the new glass scintillator with high density and high light yield. Currently, a series of high density and high yield scintillation glasses have been successfully developed. The maximum density of the glass can exceed 6.9 g/cm3. And the maximum light yield can reach up 3400 ph/MeV. Moreover, Ce3+-doped borosilicate glass can balance the targets of high density and high light yield. In addition, the glasses can achieve neutron/gamma dual detection due to presence of Li, B and Gd element.

Primary author

Presentation materials

There are no materials yet.