26 August 2024 to 4 September 2024
Orthodox Academy of Crete, Kolymbari, Crete, Greece
Europe/Athens timezone
The extended day of ICNFP 2024 will be 12 December 2024: https://indico.cern.ch/event/1486482/

Technical challenges and performance of the new ATLAS LAr Calorimeter Trigger

27 Aug 2024, 12:00
20m
Room 3

Room 3

Talk Workshop on Instruments and Methods Workshop on Instruments and Methods

Speaker

Marcos Vinicius Silva Oliveira (Brookhaven National Laboratory (US))

Description

The Liquid Argon Calorimeters are employed by ATLAS for all electromagnetic calorimetry in the pseudo-rapidity region |η| < 3.2, and for hadronic and forward calorimetry in the region from |η| = 1.5 to |η| = 4.9. They also provide inputs to the first level of the ATLAS trigger. In 2022 the LHC started its Run-3 period with an increase in luminosity and pile-up of up to 60 interactions per bunch crossing.
To cope with these harsher conditions, a new trigger readout path has been installed. This new path significantly improved the triggering performances on electromagnetic objects with lower pT thresholds, but also lower rates. This was achieved by increasing the granularity of the objects available at trigger level by up to a factor of ten.
The installation of this new trigger readout chain also required the update of the legacy system. More than 1500 boards of the precision readout have been extracted from the ATLAS cavern, refurbished and re-installed. The legacy analog trigger readout that will remain during the LHC Run-3 as a backup of the new digital trigger system has also been updated.
For the new system, 124 new on-detector boards have been added. Those boards that are operating in a radiative environment are digitizing the calorimeter trigger signals at 40MHz. The digital signal is sent to the off-detector system and processed online to provide the
measured energy value for each unit of readout. In total up to 31Tbps are analyzed by the processing system and more than 62Tbps are generated for downstream reconstruction. To minimize the triggering latency the processing system had to be installed underground. The limited available space imposed a very compact hardware structure. To achieve a compact system, large FPGAs with high throughput have been mounted on ATCA mezzanine cards. In total no more than 3 ATCA shelves are used to process the signal from approximately 34000 channels.
Given that modern technologies have been used compared to the previous system, all the monitoring and control infrastructure is being adapted and commissioned as well.
This contribution will present the challenges of the commissioning and operation, the performance and the milestones still to be achieved towards the full operation of the new digital trigger system.

Details

Marcus Vinicius Silva Oliveira - Brookhaven - USA

Internet talk No
Is this an abstract from experimental collaboration? Yes
Name of experiment and experimental site ATLAS
Is the speaker for that presentation defined? Yes

Authors

Iacopo Vivarelli (Universita e INFN, Bologna (IT)) Marcos Vinicius Silva Oliveira (Brookhaven National Laboratory (US))

Presentation materials