17-24 July 2013
KTH and Stockholm University Campus
Europe/Stockholm timezone

Minimal Supersymmetric Hybrid Inflation in Light of WMAP 9 and PLANCK

19 Jul 2013, 16:00
F3 (KTH Campus)


KTH Campus

Talk presentation Cosmology and Gravity Cosmology and Gravity


Qaisar Shafi


The minimal F-term hybrid inflation model is defined by a unique renormalizable superpotential, fixed by a U(1) R-symmetry, and employs a minimal canonical Kaehler potential. The inflationary potential takes into account both radiative and supergravity corrections, as well as an important soft supersymmetry breaking term. With n_s in the vicinity of 0.96-0.97, as strongly indicated by the recent PLANCK and WMAP-9yr measurements, the model predicts that the tensor to scalar ratio r is extremely tiny, of order 10^-14 - 10^-11, and therefore well outside the reach of PLANCK and other contemporary experiments. It also predicts that |dn_s/dlnk|~ 4 x 10^-4. If inflation is associated with the spontaneous breaking of a local U(1) symmetry such as B-L, the symmetry breaking scale is predicted to be 1-2 x 10^15 GeV. Consequently, this scenario is naturally compatible with seesaw physics and non-thermal leptogenesis can be readily implemented. We also comment on the constraints that arise due to cosmic strings from the U(1) symmetry breaking.

Primary author


Dr Konstantinus Pallis (University of Cyprus)

Presentation Materials