18–22 Sept 2017
Congress Centre "Le Majestic"
Europe/Zurich timezone

Suppression of the Slow Scintillation Component in BaF2 Crystals by Y3+ Doping

21 Sept 2017, 10:00
1h
Congress Centre "Le Majestic"

Congress Centre "Le Majestic"

Chamonix (FR)
Poster presentation P5_characterization Poster Session 3

Speaker

Prof. Junfeng Chen (California Institute of Technology (USA), Shanghai Institute of Ceramics, Chinese Academy of Sciences (China))

Description

It is well known that Barium fluoride (BaF2) crystals have a fast scintillation light peaked at 195 nm and 220 nm with a sub-ns decay time. This ultra-fast scintillation promises its wide application in future HEP experiments requiring extreme fast rate capability, Gigahertz hard X-ray imaging and TOF-PET etc. BaF2 crystals, however, have also a slow scintillation component peaked at 310 nm with a decay time of about 600 ns, which causes a pile-up problem. Two approaches have been proposed to handle the slow scintillation in BaF2: selected readout with optical band pass filters [1] or solar-blind photodetector [1] and selective doping in BaF2 with rare earth (RE), such as Ce, La and Y [2]. Our previous investigation shows a 20 cm long La/Ce doped BaF2 crystal grown in Beijing Glass Research Institute (BGRI) with effective slow component suppression [3]. In this study, we show that Y3+ ion doping has a great potential for slow component suppression in BaF2. Transmission and radio-luminescence spectra, light output, fast/slow ratio, scintillation decay kinetics and light response uniformity are measured for Y3+ doped BaF2 crystals grown in Shanghai Institute of Ceramics (SIC). The results show that the slow scintillation component in BaF2 crystal can be suppressed by up to a factor of 6 by Y3+ doping at 1at%, while the fast component remains almost unaffected. Development will continue along this line of research.

References: [1] D. Stefan, W. N. Rainer, W. Benjamin, et al., J. Phys.: Conf. Ser. 587, 012044 (2015).Ren-Yuan Zhu, Nucl. Instrum. Meth. A 340, 442 (1994).
[2] B.P. Sobolev, E.A. Krivandina, S. E. Derenzo, W.W. Moses and A. C. West, "Suppression of BaF2 Slow Component of X-Ray Luminescence in Nonstoichiometric Ba0.9R0.1F2.1 Crystals (R=Rare Earth Element),” in the Proceedings of The Material Research Society: Scintillator and Phosphor Materials, pp. 277-283, 1994, and reference therein. [3] Fan Yang, Junfeng Chen, Liyuan Zhang and Ren-Yuan Zhu, “Development of BaF2 Crystals for Future HEP Experiments at the Intensity Frontiers”, Paper N36-7 in 2016 IEEE NSS/MIC Conference Record.

Authors

Prof. Junfeng Chen (California Institute of Technology (USA), Shanghai Institute of Ceramics, Chinese Academy of Sciences (China)) Prof. Fan Yang (California Institute of Technology (USA), Nankai University (China)) Dr Chen Hu (California Institute of Technology (USA)) Dr Liyuan Zhang (California Institute of Technology (USA)) Dr Ren-Yuan Zhu (California Institute of Technology (USA))

Presentation materials

There are no materials yet.