Electromagnetic field analyses of three-dimensional-shape coils wound with coated conductors are necessary for understanding their electromagnetic phenomena, calculating their ac losses, and evaluating their field uniformity and stability. We have been developing a series of models for the numerical electromagnetic field analyses using current vector potentials. In these models, because the...
The Laboratoire National des Champs Magnétiques Intenses (LNCMI) is a member of the European Magnetic Field Laboratory (EMFL). This is the French facility enabling researchers to perform experiments in the highest possible magnetic fields. The numerical modeling jointly developed with the Center of Modeling and Simulation of Strasbourg (Cemosis) plays an essential role in the understanding and...
In recent year, the demand for high speed permanent magnet(HSPM) motor is increasing in various fields due to its high efficiency and high power density. The research and application of high speed permanent magnet motor meets the needs of economic development of energy conservation and emission reduction. However, there are some studies have found that the rotor heating is very serious, which...
The Canted-Cosine-Theta (CCT) is a design option for the next generation of high field superconducting dipoles which is being pursued within US Magnet Development Program. This paper presents new modeling techniques developed for design and analysis of this type of magnet. For mechanical modeling in ANSYS, three approaches with increasing accuracy will be compared: 2D symmetry models, 3D...
A 5 T low temperature superconducting magnet is designed and will be fabricated for EMPS (Electro-Magnetic Property measurement System) whose sample space is 50 mm in diameter. Since the sample space is twice larger than that of the conventional property measurement systems, it will be possible to measure the electro-magnetic properties of several samples at a time, therefore measurement time...
The recently developed robust multi-region numerical toolkit for the modelling of heat flows in combined solid–liquid systems [1] is extended to cover larger temperature domains, crossing the superfluid to normal helium state transition, and to include NbTi cables that feature open electrical insulation, porous to superfluid helium. The aim is to be able to probe for superconducting magnets...
Terfenol-D has giant energy density (25kJ/m3) and relatively high thermal conductivity (13.5w/ (m•k) at 20°C). It is the core component of giant magnetostrictive transducer (GMT) which has been widely used in the field of ultra-precision machining and precision fluid control technology. However, when GMT operates under 6000Hz high frequency magnetic field, hysteresis loss, eddy current loss...
For the purpose of contactlessly measuring a critical current density in a high-temperature superconducting (HTS) film, the contactless methods such as the inductive method, the hall probe method, and permanent magnet method have been developed. These methods are applied to the distribution measurement of the critical current density for the case with large-area samples such as an HTS wire or...
Numerical simulations play a crucial role in understanding transient phenomena occurring within circuits of superconducting accelerator magnets. Numerical methods are extensively used during both the electromagnetic and mechanic design. Furthermore, simulations support the quench protection system design, bringing insights on the quench behaviour and contributing to prevent potentially...
The muon ionization cooling experiment’s (MICE) purpose is to design and engineer a section of a cooling channel capable of giving the desired performance for a Neutrino Factory. Two spectrometer solenoids in the MICE cooling channel provide a uniform magnetic field for two five-plane scintillating fiber trackers to analyze the evolution of the muon beam emittance in the cooling channel. The...
The Laboratoire National des Champs Magnétiques Intenses (LNCMI) is a member of the European Magnetic Field Laboratory (EMFL). This is the French facility enabling researchers to perform experiments in the highest possible magnetic fields. The numerical modeling jointly developed with the Center of Modeling and Simulation of Strasbourg (Cemosis) plays an essential role in the understanding and...