Speaker
Description
We discuss the importance of the electroweak (``Cho-Maison")
monopole and emphasize that the detection of this monopole,
not the Higgs particle, should be the final and topological test
of the standard model. If discovered, it should become the first
magnetically charged stable topological elementary particle in
the history of physics. Moreover, it has deep cosmological implications.
It could become the seed of the premodial blackholes and large
scale structure of universe, the source of the intergalactic magnetic
field, and generate the electroweak baryogenesis. To show this
we discuss the cosmological production of the electroweak
monopole and estimate the remnant monopole density at present
universe. We confirm that, although the electroweak phase
transition is of the first order, it is very mildly first order. So
the monopole production comes from the thermal fluctuations
of the Higgs field after the phase transition, not the vacuum
bubble collisions during the phase transition. Moreover, while
the monopoles are produced copiously around the Ginzburg
temperature $T_G \simeq$ 59.6 TeV, most of them are annihilated
as soon as created. As the result the remnant monopole density
in the present universe becomes very small, of $10^{-11}$ of
the critical density. We discuss the implications of our results
on the ongoing monopole detection experiments, in particular
on MoEDAL, IceCube, ANTARES, and Auger.