Speaker
Description
Quantum-mechanical simulations have become massively used tools for scientific discovery and technological advancement: thanks to their predictive power they can suggest, accelerate, support or even substitute actual physical experiments. This is a far-reaching paradigm shift, replacing the cost- and time-scales of brick-and-mortar facilities, equipment, and personnel with those, very different, of computing engines - aiming at understanding, predicting, or designing the properties and performance of novel or complex materials and devices.
I will briefly highlight the current accomplishments and challenges, outline the current roadmap for materials discovery driven by the convergence of high-performance and high-throughput computing, and illustrate its potential with the example of novel two-dimensional and layered materials displaying promising electronic, optical, or topological properties.