Indico celebrates its 20th anniversary! Check our blog post for more information!

5–7 Dec 2018
CERN
Europe/Zurich timezone

Laser spectroscopy on Germanium isotopes at COLLAPS-CERN

5 Dec 2018, 17:30
2h
61/1-201 - Pas perdus - Not a meeting room - (CERN)

61/1-201 - Pas perdus - Not a meeting room -

CERN

10
Show room on map

Speaker

Mr Tassos Kanellakopoulos (KU Leuven (BE))

Description

Collinear laser spectroscopy (CLS) is a powerful technique to probe the structure information of the ground and long-lived isomeric states by measuring their nuclear spins, moments and charge radii [1, 2, 3]. Over the last decade, this technique has been intensively employed for the study of the exotic isotopes of the Ni region, namely around the major proton shell closure at Z = 28 and between two major neutron shell closures, N = 28 and N = 50 [4, 5]. Nuclear moments measured in this region have been used to systematically investigate the structure evolution information, such as the (sub-shell) effect of N = 40 and N = 50,and also act as an important input for the large-scale shell-model interaction. [6]. In addition, observed nuclear charge radii led to the discovery of previously unknown phenomena for the region, such as the inverted odd-even staggering in the Zn (Z = 30) and Ga (Z = 31) isotopic chains [7, 8], which however does not appear in the Ni (Z = 28) and Cu (Z = 29) isotopic chains. Thus, with more protons added beyond the Z = 28 closed shell, the study of the Ge isotopic chain (Z = 32) is interesting for the study of the nuclear shell evolution, the onset of the collectivity and triaxiality effects [9], and the nature of the inverted odd-even staggering effect.
By taking the advantages of the frequency mixing technique, the $4s^24p^2$ $^3P_1$ - $4s^24p5s$ $^3P_1$ (269 nm) atomic transition of Ge atom could be probed for the first time with high-resolution laser spectroscopy technique, resulting in the hyperfine structure measurement of Ge isotopes around N = 40. Detail information related to the experiment will be presented, together with the preliminary results.

[1] P. Campbell et al., Progress in Particle and Nuclear Physics 86, 127-180 (2016)
[2] M. J. G. Borge and K. Blaum, J. Phys. G: Nucl. Part. Phys., 45 010301 (2018)
[3] R. Neugart et al., J. Phys. G: Nucl. Part. Phys., 44 064002 (2017)
[4] M. L. Bissell et al., Phys. Rev. C 93, 064318 (2016)
[5] K. T. Flanagan et al., Phys. Rev. Lett. 103, 142501 (2009)
[6] X. F. Yang et al., Phys. Rev. Lett. 116, 182502 (2016)
[7] T. J. Procter et al., Phys. Rev. C 86, 034329 (2012)
[8] L. Xie et al., in preparation
[9] X.F. Yang et al., Phys. Rev. C 97, 044324 (2018)

Primary author

Mr Tassos Kanellakopoulos (KU Leuven (BE))

Co-authors

Mr Hanzhou Yu (Peking University) Xiaofei Yang (Peking University (CN)) Shiwei Bai (Peking University (CN)) Mark Bissell (University of Manchester (GB)) Charlie Stuart Devlin (University of Liverpool (GB)) Ronald Fernando Garcia Ruiz (CERN) Hanne Heylen (CERN) Mr Kristian König (Institut für Kernphysik, TU Darmstadt) Agota Koszorus (KU Leuven (BE)) Simon Lechner (University of Vienna (AT)) Stephan Malbrunot (CERN) Mr Tim Ratajczyk (Institut für Kernphysik, TU Darmstadt) Simon Mark C Sels (CERN) Liss Vazquez Rodriguez (Université Paris-Saclay (FR)) Liang Xie (University of Manchester (GB)) Zhengyu Xu (KU Leuven (BE)) Prof. J. Billowes (University of Manchester) Klaus Blaum (Max-Planck-Gesellschaft (DE)) Rainer Neugart (Max-Planck-Gesellschaft (DE)) Prof. Wilfried Nörtershäuser (TU Darmstadt) Deyan Yordanov (Universite de Paris-Sud 11 (FR)) Gerda Neyens (CERN)

Presentation materials

There are no materials yet.