Conveners
Parallel: A3 - Heavy Flavor I
- Magdalena Djordjevic (Institute of Physics Belgrade)
Parallel: B3 - Heavy Flavor III
- Lijuan Ruan
Parallel: C3 - Heavy Flavor IV
- Elena Gonzalez Ferreiro (Universidade de Santiago de Compostela (ES))
Parallel: D3 - Heavy Flavor VI
- Enrico Scomparin (Universita e INFN Torino (IT))
Parallel: E3 - Heavy Flavor VII
- joerg aichelin (Subatech/CNRS)
Parallel: F3 - Heavy Flavor VIII
- Deepa Thomas (University of Texas at Austin (US))
Parallel: G3 - Heavy Flavor IX
- William Alexander Horowitz (University of Cape Town (ZA))
Parallel: H3 - Heavy Flavor X
- Giulia Manca (Universita` degli studi di Cagliari and INFN, Cagliari, IT)
It has been proposed that the azimuthal distributions of heavy flavor quark-antiquark pairs may be modified in the medium of a heavy-ion collision. This assumption was tested through next-to-leading order (NLO) calculations of the azimuthal distribution, $d\sigma/d\phi$, including transverse momentum broadening, employing $\langle k_T^2 \rangle$ and fragmentation in exclusive $Q \overline Q$...
Evidence for collectivity and effects beyond nPDF modifications and energy loss in small systems has been observed in recent years. In high-multiplicity pPb events, J/$\psi$ is found to show a surprisingly large long-range elliptic anisotropy signal, comparable to that for light and open-heavy flavor hadrons. In addition, results on prompt J/$\psi$ and $\psi(2S)$ production in pPb data at 5.02...
Heavy flavours are effective probes of the hot and dense matter, the Quark-Gluon plasma (QGP), produced in ultra-relativistic heavy-ion collisions. Due to the very short time scale characterising their production, they experience the whole evolution of the system. In particular, measurements of heavy-flavour production in Pb-Pb collisions at the LHC energies, including nuclear modification...
Within the two p-Pb data samples collected by the LHCb detector at sqrt(s_NN) = 5 and 8.16 TeV, a rich set of open charm hadrons is observed with abundant statistics. Thanks to the LHCb forward acceptance that is complementary to general purpose detectors, with excellent performances in particle reconstruction and identification, these charm states are studied down to zero pT with...
Quarkonia are excellent probes for studying the properties of quark-gluon plasma formed in relativistic heavy-ion collisions at RHIC. In order to fully understand the observed suppression of quarkonium production in Au+Au collisions at $\sqrt{s_{\mathrm{NN}}}$ = 200 GeV, it is essential to understand well the cold nuclear matter (CNM) effects on the quarkonium production. Collisions of p+Au at...
Relativistic heavy-ion experiments have observed similar quenching effects for (prompt) $D$ mesons compared to charged hadrons for transverse momenta larger than 6-8 GeV, which remains a mystery since heavy quarks typically lose less energies in quark-gluon plasma than light quarks and gluons. Recent measurements of the nuclear modification factors of $B$ mesons and $B$-decayed $D$ mesons by...
Understanding heavy-flavor transport properties and energy loss inside a quark-gluon plasma (QGP) is a major interest of the heavy-ion phenomenology. In this work, we combine both open-heavy and heavy-flavor jet observables to study the average heavy quark energy loss as well as its fluctuations. Low-momentum heavy quark interacts with QGP mainly through elastic collisions; for high-momentum...
Energy loss of quarks in the hot and dense medium has been studied for
decades. Both the experimental and theoretical efforts hinted that the
energy loss is quark mass dependent (the yield of heavier quarks will be
less suppressed). It was found that the electrons from heavy quarks (charm,
and bottom) are less or similarly suppressed compared to that of light
hadrons. The mass ordering of...
Charm quarks are an excellent probe of the quark-gluon plasma created in heavy-ion collisions as they are produced at very early stages of such collisions and subsequently experience the whole evolution of the system. At STAR experiment, charm quark production can be accessed by direct topological reconstruction of open-charm hadrons thanks to an excellent track pointing resolution provided by...
Open heavy flavor and quarkonium are valuable probes to identify the underlying QCD dynamics behind high multiplicity events at RHIC and LHC. In previous studies [1,2], we explored $D$-meson and $J/\psi$ production vs. charged hadron multiplicity in $p+p$ and $p+A$ collisions in the CGC framework; we modeled an initial state effect in terms of the fluctuation of gluon saturation scale, $Q_s$....
The dynamics of shower development for a jet traveling through the QGP involves a variety of scales, one of them being the mass for heavy flavors residing inside jets. Though the mass of the heavy quarks plays a subdominant role during the high virtuality portion of the jet, it does affect longitudinal drag and diffusion, stimulating additional radiation from heavy quarks [1]. These emissions...
Heavy quarks are excellent probes to study the initial stages of heavy ion collisions since they are generated in the early times around 0.1 fm/c together with a thermalization time that is comparable to the lifetime of the QGP phase. In this talk we want to focus on two novel aspects of the HQs dynamics related with the very early stage of their evolution (t< 0.5-1 fm/c). The first is the...
Charm quarks are excellent probes to study properties of the Quark-Gluon Plasma (QGP) created in ultra-relativistic heavy-ion collisions. In particular, measurements of the $D_{s}^{\pm}$ meson production can provide valuable information on the strangeness enhancement in the QGP as well as the charm quark hadronization mechanism in heavy-ion collisions. In this talk, we will present results...
Results of nuclear modification of Upsilon production in pPb collisions at 5.02 TeV and exclusive Upsilon photoproduction in Ultraperipheral collisions (UPC) of pPb at 8.16 TeV, are presented. The nuclear modification factors in pPb collisions are measured to quantify nuclear effects in such a small system and sequential suppression is observed among the three states following the ordering of...
Heavy quarks (charm and beauty) are produced in abundance during the early stage of ultra-relativistic heavy-ion collisions. They therefore experience the full evolution of the Quark-Gluon Plasma (QGP). This makes them unique probes of the collective behaviour of particles in the medium as it expands and cools. The anisotropy of the overlap region between the two colliding nuclei in the...
The energy loss of heavy quarks propagating through the quark-gluon plasma (QGP) is expected to transit from an elastic regime at low and intermediate momenta to a radiative regime at high momenta. For the latter, a significant amount of energy dissipates by radiating rather soft gluons that can strongly interact with the surrounding medium through non-perturbative many-body effects. In order...
The sPHENIX detector at BNLโs Relativistic Heavy Ion Collider (RHIC) will measure a suite of unique jet and Upsilon observables with unprecedented statistics and kinematic reach at RHIC energies. A MAPS-based vertex detector upgrade to sPHENIX, the MVTX, will provide a precise determination of the impact parameter of tracks relative to the primary vertex in high multiplicity heavy ion...
Extraction of the multi-TeV proton and lead LHC beams with a bent crystal or by using an internal gas target allows one to perform the most energetic fixed-target experiment ever. $pp$, $pd$ and $pA$ collisions at $\sqrt{s_{NN}}=115$ GeV and Pb$p$ and PbA collisions at $\sqrt{s_{NN}}=72$ GeV can be studied with high precision and modern detection techniques over a broad rapidity range.
Using...
The measurements of the charmed baryons are fundamental to investigate charm-quark production and hadronization mechanisms in different collision systems.
Recent measurements of charm-baryon production in small systems at LHC energies show a baryon-over-meson ratio significantly higher than that in e$^{+}$e$^{-}$ and e$^{\pm}$p collisions, and higher than expectations from Monte Carlo...
Beauty quarks are considered as one of the best probes of the strongly interacting medium created in relativistic heavy-ion collisions because they are predominantly produced via initial hard scatterings. Measurements of B meson production provide information about the diffusion of beauty quarks and the flavor dependence of in-medium energy loss. In these studies, clarifying the hadronization...
Quarkonia production in AA collisions has been the subject of vivid discussions since it was proposed as a signature of the quark-gluon plasma formed in these collisions. By now, it seems there is little doubt that both mechanisms of dynamical suppression and recombination are necessary in order to understand the most common observables, the nuclear modification factor RAA of J/Psi as well as...
DREENA framework is based on our dynamical energy loss formalism, which takes into account ๏ฌnite size, ๏ฌnite temperature QCD medium consisting of dynamical (moving) partons. Both radiative and collisional energy losses are calculated under the same theoretical framework in the dynamical energy loss formalism, which is applicable to both light and heavy ๏ฌavor observables. We generalized the...
Experimental measurements indicate no suppression (e.g. RpPb โผ 1) but a surprisingly large D meson v2 was measured in pPb collisions. In order to understand these results we use Trento+v-USPhydro+DAB-MOD to make predictions and propose a system size scan at the LHC involving $^{208}PbPb$, $^{129}XeXe$, $^{40}ArAr$, and $^{16}OO$ collisions. We find that the nuclear modification factor...
The last decade of hadron spectroscopy has unveiled a wealth of states that do not have the properties expected of particles composed of 2 or 3 valence quarks. Among the most intriguing of these exotics is the X(3872), which various models attempt to describe as a hadronic molecule, a compact tetraquark, an unexpected charmonium state, or their mixtures. Heavy ion collisions, as well as high...
The structure of the exotic meson $\chi_{c1}(3872)$, also known as $X(3872)$, is still under debate. The similarity of the $\chi_{c1}(3872)$ mass and the $D-\bar{D}^{*}$ mass threshold inspired the interpretation that $\chi_{c1}(3872)$ is a $D-\bar{D}^{*}$ โmoleculeโ with small binding energy. Another explanation is that this meson is a tetra-quark, consisting of a di-quark and di-antiquark....
Recently, LHCb collaboration has presented the relative production rates of promptly produced X(3872) over ฯ(2S) as a function of particle multiplicity, given by the total number of charged particle tracks reconstructed in the VELO detector for the forward pseudorapidity region, 2 < ฮท < 5. This ratio is found to decrease with increasing multiplicity.
In fact, suppression of weakly-bound...
We investigate the in-medium kinetics of the X(3872) particle in ultrarelativistic heavy-ion collisions. Toward this end we employ our well-tested rate equation approach for charmonia to compute the time evolution of the X(3872) distribution with its two pertinent transport parameters, i.e., the equilibrium limit and inelastic reaction rate. The former is entirely determined by the X(3872)'s...
Because of their large mass, the interactions of heavy quarks with the quark-gluon plasma (QGP) may be different from those of light quarks and hence can provide essential inputs in understanding the QGP. With strange quark yields being enhanced in the presence of a QGP, the production of $D_{s}^{+}$ is expected to be enhanced if recombination plays an important role in the hadronization...
Heavy flavor production and collectivity in A+A collisions provide insight into the energy loss mechanism and transport properties of heavy quarks in the QGP medium. In this talk, ATLAS measurements on nuclear modification factor and $v_{2}$ and $v_{3}$ flow coefficients of muons from heavy flavor decays in Pb+Pb collisions are presented as a function of muon $p_{T}$ and centralities. Muons...
Dileptons are considered as one of the cleanest signals of the quark-gluon plasma (QGP),however, the QGP radiation is masked by many 'background' sources from either hadronic decays or semileptonic decays from correlated charm pairs. In this study we investigate the relative contribution of these channels in heavy-ion collisions from $\sqrt{s_{\rm NN}}=$ 8 GeV to 5 TeV with a focus on the...
Measurements of heavy-flavor hadron production and elliptic flow ($v_{2}$) provide unique and indispensable information for understanding the properties of the quark-gluon plasma. Recent STAR measurements indicate that in Au+Au collisions at $\sqrt{s_{\mathrm{NN}}}=$ 200 GeV $D^{0}$ mesons develop large $v_{2}$ similarly as light-favor hadrons, implying that charm quarks interact strongly with...
Heavy quarks are predominantly produced at the early stages of relativistic heavy-ion collisions before the formation of the quark-gluon plasma (QGP) medium. Heavy quarks subsequently traverse the QGP throughout its whole evolution, and thus are suggested as excellent probes to study the properties of the QGP. Theory predicts heavy quarks lose less energy than light quarks through gluon...
We present recent developments of the POWLANG transport model for the study of heavy-flavour (HF) production in heavy-ion collisions. In particular we focus on the results of recent/ongoing work concerning:
- Event-shape engineering studies of D-meson distributions;
- Full 3+1 transport simulations validated against soft-particle production data. The realistic 3+1 hydrodynamic...
In hadronic collisions, beauty quarks are produced in hard scattering processes with large momentum transfer. Their production provides a very important test of perturbative QCD calculations in pp collisions.
In heavy-ion collisions, the measurement of beauty hadron production is a unique tool to investigate the properties of the Quark-Gluon Plasma. In particular, beauty quarks, being four...
Polarization measurements represent an important tool for understanding the particle production mechanisms occurring in protonโproton collisions. In particular, for quarkonium states, the very small polarization measured at the LHC represents a serious and a long-lasting challenge for theoretical models. When considering heavy-ion collisions, particle polarization could also be used to...
Heavy flavor observables provide valuable information on the properties of the hot and dense quark gluon plasma (QGP) created in ultrarelativistic nucleus-nucleus collisions. Various microscopic models have successfully described many of the observables associated with its formation. Their transport coefficients differ, however, due to different assumptions about the underlying interaction of...
Heavy flavor physics in high-energy heavy-ion collisions is a promising and active area to study the `` jet quenching " effects both at the RHIC and the LHC. The recent reported $D^0$ meson radial profiles in jets measured by CMS collaboration provide new experimental constraints on the mechanisms of heavy flavor production in proton-proton collisions and give new insights into the in-medium...
J/$\psi$ mesons have been found to be produced with more jet activity than predicted by models in pp collisions at the LHC. J/$\psi$ production has long been known to be modified in nuclear collisions, via Debye screening, as well as by other effects. Indirect evidence, in particular, the non-vanishing $v_{2}$ of J/$\psi$ at large transverse momentum, however, suggests that jet quenching may...