DIS on nuclei at the LHeC and FCC-eh

14 Oct 2020, 15:05
25m
Online

Online

Oral report Section 4. Relativistic nuclear physics, elementary particle physics and high-energy physics. Section 4. Relativistic nuclear physics, elementary particle physics and high-energy physics

Speaker

Nestor Armesto Perez (Universidade de Santiago de Compostela (ES))

Description

The Large Hadron-electron Collider is the proposal of an upgrade of the HL-LHC. An energy recovery linac will provide 50 GeV electrons to collide with the HL-LHC hadrons beams or, later, with the hadron beams at the Future Circular Collider. When combined with the available HL-LHC Pb beams, it will deliver e-Pb collisions with nucleon-nucleon centre-of-mass energies around 0.8 TeV, and per nucleon instantaneous luminosities around $10^{33}$ cm$^{-2}$s$^{-1}$. Such collisions will explore a completely uncharted region of the $x-Q^2$ plane that extends the region presently covered by nuclear DIS experiments by three to four orders of magnitude in $x$ and $Q^2$. In this talk we present the physics opportunities with such machine: a determination of nuclear parton densities with complete flavour unfolding, studies of 3D structure using diffractive observables, and the opportunities to search a new non-linear regime of QCD - parton saturation - through combined studies of e-p and e-A collisions. Besides, studies of QCD radiation and hadronisation in the nuclear environment. All these aspects have strong implications of our understanding of heavy ion collisions at high energies and of the quark-gluon plasma.

Primary author

Nestor Armesto Perez (Universidade de Santiago de Compostela (ES))

Presentation materials