INFLUENCE OF NEUTRON SHELLS ON SURFACE TENSION IN NUCLEI

15 Oct 2020, 16:50
25m
Online

Online

Oral report Section 1. Experimental and theoretical studies of the properties of atomic nuclei. Section 1. Experimental and theoretical studies of the properties of atomic nuclei

Speaker

Aleksey Dolgodvorov (Nuclear Safety Institute of the Russian Academy of Sciences)

Description

Estimation of the surface tension coefficients in the even-even nuclei could be performed due to connection of surface tension and nuclear rigidity [1]. The values of rigidities are connected with the mean squared deformations of nuclei [2]. The estimation of the surface tension coefficients in the even-even nuclei were presented in [3]. The coefficients $\sigma$ show great fluctuations: from $\sigma \approx$ 1.0÷1.8 (for 150<$A$<198) up to $\sigma$ ≈ 34 MeV/$\text{fm}^2$ (for $^{208}\text{Pb}$, $^{210}\text{Pb}$). The comparison of these values with the data on nuclear charge radii reveals the impact of the filled out neutron shell peculiarities on $\sigma$.
In the figures the calculated [3] surface tensions for Calcium and Zirconium isotopes together with the values of $r_0$ coefficients are shown. The surface tension in nuclei is highly influenced by the shell structure, especially of the neutron subshells near the surface: $(1d_{3/2})_n^4(1f_{7/2})^8_n$ for $^{48}\text{Ca}$ and $(1g_{9/2})^{10}(2d_{5/2})^6$ for $^{96}\text{Zr}$ . The highest $\sigma$ corresponds as well to the highest values of pressure $p$ (according to the Laplace formula $p \approx \frac{2 \sigma}{R}$). It is obvious that filling out two near neutron subshells leads to grow of pressure on the proton component of the nuclei and, as consequence, to decreasing of the charge radii.
For $^{208}\text{Pb}$ and $^{210}\text{Pb}$ the surface tension is close to the maximum among all even-even nuclei ($\sigma \approx$ 34 MeV/$\text{fm}^2$). It is approximately $0.75 \cdot 10^{20}$ higher than $\sigma$ for water at 20 $^\text{o}$C.

References
[1] A. Bohr // Dan.At.Fys.Medd. 22, #14, 7 (1952)
[2] S. Raman ea// At.Data & Nucl.Data Tabl. 78, 1 (2001)
[3] N.G. Goncharova //PEPAN 50,#5,532 (2019); N.G. Goncharova, A.P. Dolgodvorov //Moscow Univ.Bull.69#3(2014)

Author

Dr Natalia Goncharova (Lomonosov Moscow State University, Faculty of Physics)

Co-author

Aleksey Dolgodvorov (Nuclear Safety Institute of the Russian Academy of Sciences)

Presentation materials