Speaker
Description
The self-consistent calculations with the use of functionals of both Skyrme and Fayans have been performed for the probability of E1-transitions between the first one-phonon $2^+$ and $3^-$states in Sn isotopes. Good agreement with the available experimental data has been obtained. As in our previous calculations for the quadrupole moments of the first $2^+$ [1], and $3^-$ states [2], and for the EL transitions between first $2^+$ and $3^-$ states in magic nuclei [3], we have found that two dominant contributions to observed characteristics come from new three-quasiparticle ground states correlations (GSC), which are largely due to tadpole effects, and from the nuclear polarizability. The polarizability effects reduce the E1 transition probabilities by one order of magnitude. An opposite effect of similar magnitude proves to arise from the three-quasiparticle GSCs. So, in contrast to E2 transitions, the E1 transition probability is determined by the difference between the large effects of nuclear polarizability and three-quasiparticle GSCs.
-
D. Voitenkov, S. Kamerdzhiev, S. Krewald, E. E. Saperstein,and S. V. Tolokonnikov, Phys. Rev. C 85, 054319 (2012).
-
S. P. Kamerdzhiev, D. F. Voitenkov, E. E. Sapershtein, S. V. Tolokohhikov, JETP Lett. 108, 155 (2018)
-
S. P. Kamerdzhiev, D. F. Voitenkov, E. E. Sapershtein,S. V. Tolokonnikov, and M. I. Shitov, JETP Lett. 106, 139 (2017).