STUDY OF DECAY PROPERTIES OF ${}^{260}$Sg* NUCLEUS FORMED VIA DIFFERENT INCOMING CHANNELS BY USING GSkI SKYRME FORCE

14 Oct 2020, 18:10
1h
Online

Online

Poster report Section 2. Experimental and theoretical studies of nuclear reactions. Poster session 2 (part 2)

Speaker

Dr Niyti (Gandhi Memorial National College, Ambala Cantt)

Description

The method being successfully used for the synthesis of superheavy elements is that of complete fusion reactions, which are classified as cold fusion and hot fusion reactions. In the present work, we have studied the excitation functions (EFs) of ${}^{260}$Sg${}^{*}$, formed in fusion reaction ${}^{52}$Cr + ${}^{208}$Pb [4], based on Dynamical Cluster decay Model (DCM) [1]. For the nuclear interaction potentials, we use the Skyrme energy density functional (SEDF) based on semiclassical extended Thomas Fermi (ETF) approach under frozen density approximation. The Skyrme force used is the new GSkI force [3] for our calculation for cross section and comparison with the experimental data taken from [4]. Here, only the EFs for the production of ${}^{260}$Sg${}^{*}$ isotope via 2n decay channel from the ${}^{260}$Sg${}^{*}$ compound nucleus are studied at E*= 13 to 19 MeV for incoming channel, including quadrupole deformations $\beta_{2i}$ and cold-optimum" orientations $\theta_{i}$.The calculations are made within the DCM where the neck-length $\Delta$R is the only parameter representing the relative separation distance between two fragments and/or clusters $A_{i}$ (i=1,2) which assimilates the neck formation effects. Our calculations are shown in table.

Table:1 The “cold fusion” excitation function of 2n evaporation channels from ${}^{260}$Sg${}^{*}$ due to entrance channels ${}^{52}$Cr + ${}^{208}$Pb, calculated on the basis of DCM for a best fit of ∆R, at different E*= 13 to 19 MeV energies for GSkI Skyrme.

The calculations are made for best fit to each and every data point and clearly, irrespective of excitation energy, Skyrme Force GSKI included DCM reproduces data nicely.
References:
1. R. K. Gupta, in Lecture Notes in Physics,818, Vol. 1, Clusters in Nuclei, edited by C. Beck (Springer-Verlag, Berlin, Heidelberg, 2010), pp. 223-264.
2. Niyti, et el., Phys. Rev. C. 95, 034602 (2017).
3. C. M. Folden, et el., Phys. Rev. C. 79, 027602 (2009).
4. Aman Deep, et al. 1950079, (accepted) IJMPE (2019).

Primary authors

Dr Niyti (Gandhi Memorial National College, Ambala Cantt) Mr Amandeep (Kurukshetra University) Dr Rajesh Kharab (Kurukshetra University) Dr Raj Pal Singh (Gandhi memorial National College, Ambala Cantt) Dr Sahila Chopra

Presentation materials