SELF-CONSISTENT APPROACH TO BETA-DECAY OF NEUTRON-RICH NUCLEI

Oct 13, 2020, 9:35 AM
35m
Online

Online

Plenary report Section 1. Experimental and theoretical studies of the properties of atomic nuclei. Plenary

Speaker

Ivan Borzov (National Research Centre Kurchatov Institute, 123182, Moscow, Russia; Bogolubov Laboratory of Theoretical Physics, Joint Institute of Nuclear Research, 141980, Dubna, Russia)

Description

The global beta-decay calculations are presented which are based on the Density Functional developed by Fayans et.al. [1] and Continuum Quasiparticle Random-Phase Approximation. The DF3+CQRPA model [2] describes the data on the half-lives and probabilities of delayed neutron emission for more than 200 (quasi) spherical nuclei with Z = 18 - 52 and T1/2 < 5c within the factor of 2 and 3 correspondingly (Fig.1). A detailed comparison with modern self-consistent models: spherical RHB + RQRPA [3], deformed FAM [4] and HFB + QRPA [5] is performed. The“sudden shortening” of the β-decay half-lives found in RIKEN for the Ni isotopes crossing the major neutron shell at N=50 [6] are addressed (Fig.2). The performance of “beyond the QRPA models” in explaining beta-decay acceleration in the 78,79Ni is discussed. Supported by the grant of Russian Foundation for Basic Research (RFBR 18-02-00670).

[1]. S.A. Fayans, S.V. Tolokonnikov, EL. Trykov, D. Zawischa., Nucl.Phys. A676, 49 (2000).
[2] I.N. Borzov., Phys. Rev. C67, 025802 (2003).
[3] T. Marketin, L. Huther, and G. Martinez-Pinedo, Phys. Rev. C 93,025805 (2016).
[4] M. T. Mustonen, T. Shafer, Z. Zenginerler, and J. Engel., Phys. Rev. C 90, 024308 (2014)
[5] K. Yoshida., Phys.Rev. C100, 024316 (2019).
[6] Z. Y. Xu et al., Phys. Rev. Lett. 113, 032505 (2014).

Primary author

Ivan Borzov (National Research Centre Kurchatov Institute, 123182, Moscow, Russia; Bogolubov Laboratory of Theoretical Physics, Joint Institute of Nuclear Research, 141980, Dubna, Russia)

Presentation materials