Speaker
Description
Real-time dynamic positron emission tomography (PET) of human brain function in natural and free states has significant and far-reaching scientific and clinical value. However, PET detectors need to use scintillation crystals with high effective atomic number and high density to detect gamma photon pairs generated by the positron annihilation, which is difficult to meet the requirements of light weight and miniaturization in the design of wearable imaging systems.
Advanced Time of Flight (TOF) technology can reduce the uncertainty in the estimation of the position of positron annihilation during PET image reconstruction, improve the effective sensitivity of the system and the signal-to-noise ratio of the image, and significantly reduce the usage and weight of the scintillation crystals. Therefore, TOF technology is a key technology for realizing wearable and mobile PET imaging.
We are developing a TOF-PET system for wearable and mobile brain imaging. The wearable PET helmet (118 mm in radius and 134 mm in length) is constructed with 2.7kg of LYSO crystals. In this talk, we will report our progress in the simulation-based system design, the designs and performance of the TOF PET detectors, readout electronics, and mechanics, and the performance of the assembled system.
Topic Selection | Brain Imaging |
---|