4–10 Apr 2022
Auditorium Maximum UJ
Europe/Warsaw timezone
Proceedings submission deadline extended to September 11, 2022

Heavy quark-antiquark interaction in finite temperature lattice QCD

6 Apr 2022, 17:34
4m
Poster Lattice QCD and heavy-ion collisions Poster Session 1 T06 / T07

Speaker

Dr Johannes Heinrich Weber (Humboldt University of Berlin)

Description

Heavy quarkonia are important probes of the matter created in heavy ion-collisions. The complex
heavy-quark potential is an essential ingredient of dynamical models of quarkonium production in
heavy-ion collisions, e.g. in models based on open quantum system approach.
We calculate the complex heavy-quark potential in (2+1)-flavor QCD with physical quark masses on
the lattice using large temporal extent. The heavy-quark potential is extracted from the Wilson
line correlators in Coulomb gauge. Then we extract the underlying spectral functions using multiple
conceptually different analysis methods -- spectral function fits, an HTL inspired fit for the
correlation function, Padé rational approximation and the Bayesian BR spectral reconstruction and
compare the implications of each for the existence and properties of a well defined dominant
spectral peak.
The peak position corresponds to the real part of the potential, while the width corresponds to
the imaginary part of the potential. While all the methods roboustly point toward a significant
imaginary part of the potential that increases with increasing separation between quark and
antiquark, the expected screening of the real part of the potential is not evident in our
calculations.

References:

[1] D. Bala et al, e-Print: 2110.11659 [hep-lat], submitted to PRD
[2] D. Hoying et al, Contribution to: Lattice 2021, e-Print: 2110.00565 [hep-lat]

Primary author

Dr Johannes Heinrich Weber (Humboldt University of Berlin)

Co-authors

Presentation materials