Conveners
FRI-OR6-701 Design and Analysis
- So Noguchi (Hokkaido University)
- Honghai Song (Stony Brook University)
Superconducting magnets are employed in accelerators to achieve higher magnetic fields to attain a higher particle-beam deflection. However, superconductivity, i.e. the complete absence of electrical resistivity, is lost upon exceeding a critical temperature leading to the quench phenomenon. Then, the affected magnet regions shift to normal-conducting state and begin to heat up. In the worst...
The R&D project of compact high-temperature superconducting (HTS) cyclotron system for radioisotope production is ongoing, supported by Japan Science and Technology Agency (JST) and Japan Society of the Promotion of Science (JSPS). This HTS cyclotron has two major features: (1) the magnet has no iron core (air-core), and (2) the output energy is variable. The developing HTS cyclotron system is...
High-field REBCO magnets contain several pancake coils with many turns, which are vulnerable to high stress and strain due to the large background magnetic fields. In addition, screening currents substantially increase the stress. Electro-thermal quench is another issue which is required to be taken into account while designing a high field magnet. Thus, there is a need for fast and accurate...
A 46 T all-superconducting magnet is being designed at the Institute of Plasma Physics Chinese Academy of Sciences. This magnet consists of, from the outside to the inside, the CFETR CS model coil capable of producing a 10 T central field, a REBCO-CORC insert coil providing an additional 10 T central field, and three REBCO insert coils which are dry wound with 4 mm wide REBa2Cu3O7-x tape...
The quench process in a superconducting magnet is inherently transient and three-dimensional (3D). In many cases, such as magnets protected by active protection systems, it is possible to accurately simulate this transient with a two-dimensional model. However, a more complex 3D model is required in case of a self-protecting magnet. Simulations are particularly challenging due to physical and...
Commercial REBCO tapes are a promising technology for power and magnet engineering. Due to their complex manufacturing, they present inhomogeneities of the critical current distribution and silver stabilizer thickness along their length. It is therefore paramount to investigate the impact of inhomogeneities when designing superconducting devices based on such tapes.
This kind of study...
With only 1 µm thickness of high temperature superconducting (HTS) material, HTS tapes are very fragile and can easily undergo an irreversible damage when operated near to its rated values. When wound into coils, this phenomena intensifies, limiting the operating values to only 50-80 % of its rated values. This is mainly due to the restricted HTS current path and poor thermal conduction...