Racetrack model coils (RMC) have been built at CERN during the past decade, as a R&D tool to qualify conductors and technologies developed for high field superconducting magnets. Racetrack model coils, assembled in a dipole magnet configuration, proved to be an efficient instrument reducing cost and feed-back time while developing new magnets. In a similar way as for the HL-LHC project, CERN...
CERN is currently investigating the feasibility of a future collider - the Future Circular Collider (FCC)- as a potential successor of the Large Hardon Collider (LHC), providing scientists in the field of high energy physics with a powerful discovery tool. A 100 km tunnel hosting a circular electron–positron collider as a first stage towards a 100 TeV proton–proton collider would probe new...
We present the design of a four-layer, Canted Cosine Theta (CCT) Nb3Sn dipole magnet as part of the general R&D program for high field superconducting magnets supported by the US Magnet Development Program (US-MDP). Future testing with HTS inserts in a hybrid configuration motivates the design’s large clear aperture of 120 mm and target operating dipole field of 12 T. First, we show results...
Large-aperture high-field magnets based on Nb3Sn superconductor are needed for various accelerator systems of future hadron and muon colliders. High level of magnetic field and large aperture lead to significant Lorentz forces and mechanical strains and stresses, which can degrade or even permanently damage brittle Nb3Sn coils. This paper describes a 120-mm-aperture two-layer dipole coil...
The future of the particle accelerators points to a new CERN’s circular collider with an order of magnitude increase in the center-of-mass energy compared to the Large Hadron Collider (LHC). To achieve this increase from 14 TeV to 100 TeV a 100 km tunnel will be required to host the collider. This particle accelerators requires a new generation of double aperture superconducting magnets,...