A proton therapy equipment named SC200 is developing in the Institute of Plasma Physics Chinese Academy of Sciences (IPP, CAS) and Heifei CAS Ion Medical and Technical Devices company. In order to develop a light weight gantry for proton therapy, the Canted Cosine theta (CCT) superconducting magnet technology was considered to apply in the superconducting gantry development. The designs of two...
Proton therapy (PT) is a precise and efficient radiotherapy method in modern medical treatment, which can be focused on the lesion location to kill the tumor cells with little affection on the normal tissues and thus largely reduce the potential side effects. However, the proton therapy instrument is usually very huge with a large occupation in the space. In order to reduce the instrument...
A project to develop a compact heavy-ion therapy device has been initiated at the National Institutes for Quantum and Radiological Science and Technology. The therapy device uses a 430-MeV/u synchrotron with superconducting bending magnets as a main accelerator. In order to reach the required output of the heavy-ion beam, the bending magnets have been designed to be operated alternately from...
In heavy particle radiotherapy, a rotating gantry enables charged particles to be delivered to a tumor with great accuracy. Therefore, cancer therapy that minimizes unnecessary damage to a patient can be realized by using the rotating gantry. The world’s first rotating gantry composed of superconducting magnets was developed in Japan. Using superconducting magnets instead of conventional...
The last bending section of a proton therapy beam line is mounted on a rotating gantry to target the cancerous cells of the patients from all possible angles. Such capability can increase the effectiveness of cancer treatment as the tumors would receive the appropriate amount of radiation dose with a minimum impact on the surrounding healthy tissue. Superconducting magnets with their high...
This paper describes the design and the test result of the world’s most compact rotating gantry for heavy ion therapy system mounted with superconducting bending and focusing magnets that is successfully installed in East Japan Heavy Ion Center Faculty of Medicine, Yamagata University, Japan. Rotating gantry is a cylindrical irradiation equipment with magnets for beam transport and beam...
SIGRUM (Superconducting Ion Gantry with Riboni’s Unconventional Mechanics) project comes from the strong collaboration between ‘Centro Nazionale di Adroterapia Oncologica’ (CNAO), in Pavia, Italy, and CERN. This centre, relying on CERN experience in accelerator particles, wants to improve cancer treatments with a novel superconducting ion gantry structure.
The magnet is operated at a...
Heavy-ion radiotherapy has a high curative effect and low burden on patients, so it has been spreading in recent year. On the other hand, since heavy-ion radiotherapy system have large apparatuses such as injector, synchrotron, and rotating gantry, it is necessary to downsize these apparatuses in order to further wide spreading. Therefore, a project to develop a next generation small facility...