Speaker
Description
We examine the region of the parameter space of the Next to Minimal
Supersymmetric Standard Model (NMSSM) and the Minimal Supersymmetric Standard Model~(MSSM) with a light neutralino~($M_{\tilde{\chi}_1^0} \leq$~62.5~GeV) where the SM-like Higgs boson can decay invisibly, the thermal neutralino relic density is smaller than the measured cold dark
matter~(DM) relic density, and where experimental constraints from LHC searches, flavour physics and DM direct detection are satisfied. We observe allowed regions of parameter space in the NMSSM and the MSSM where the lightest neutralino could have a mass as small as $\sim 1~{\rm GeV}$ and $\sim 35~{\rm GeV}$, respectively, while still providing a significant component of relic dark matter. We then examine the prospects of probing the NMSSM and the MSSM with a light neutralino via invisible Higgs boson width measurements at the ILC. We also explore the complementarity between future direct detection experiments and Higgs boson invisible width measurement at the ILC. In the NMSSM with light neutralino, we find that the ILC will be able to probe parameter space points in the $M_{\tilde{\chi}_1^0} < 10~{\rm GeV}$ region which may be forever outside the reach of DM detectors. We also find that the ILC will be able to probe a considerable fraction of parameter space points which fall outside the projected reach of future DM detectors in the $10~{\rm GeV} < M_{\tilde{\chi}_1^0} < 62.5~{\rm GeV}$ region.
Time Zone | Americas |
---|