Speaker
Description
Extraction of the Quark-Gluon Plasma (QGP) transport properties (i.e. specific shear viscosity $\eta/s$) is a prime goal of the heavy-ion programs at the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC). Correlators that are sensitive to both initial-state effects and final-state viscous attenuation can give invaluable constraints for temperature ($T$) and chemical potential ($\mu_{B}$) dependence of $\eta/s$. The $\rho(v^{n}_{2},\langle p_{T} \rangle)$ correlator, that gives the strength of the correlation between an event’s mean-transverse momentum $[p_{\mathrm{T}}]$ and its $v_2$ magnitude, shows more sensitivity to the initial state than to final stat effects~[1--2]. A comprehensive set of $v_n^2$, $[p_{T}]$, ${\rm cov}(v_{2}^{2},[p_T])$ and $\rho(v^{2}_{2},\langle p_{T} \rangle)$ calculations for Au+Au collisions spanning the beam energy range $\sqrt{s_{\rm NN}}$ = 2760--19.6 GeV using the Hydro-hybrid, AMPT and EPOS models, will be presented for several centralities and event shape selections. Our simulated results~[1--2] show characteristic beam-energy-dependent and event shape trends that can give significant constraints for the respective influence of initial-state fluctuations, system-size, system-shape, and $\eta/s(\mu_{B},T)$.
[1] N. Magdy, et al., Phys.Lett.B 821 (2021) 136625
[2] N. Magdy, et al., arXiv:2111.07406