Conveners
PA-Heavy-flavor and Quarkonia
- Dong Ho Moon (Chonnam National University (KR))
PA-Heavy-flavor and Quarkonia
- Pol-Bernard GOSSIAUX
PA-Heavy-flavor and Quarkonia
- Krista Lizbeth Smith (Los Alamos National Laboratory (US))
PA-Heavy-flavor and Quarkonia
- Yongsun Kim (Sejong University)
PA-Heavy-flavor and Quarkonia
- Dong Jo Kim (University of Jyvaskyla (FI))
PA-Heavy-flavor and Quarkonia
- Lukรกลก Chlad
Presentation materials
Quarkonia are excellent probes of deconfinement in heavy-ion collisions. For
Because of the different binding energies, bottomonium mesons are particularly useful probes to understand the thermal properties of quark-gluon plasma. Previously, CMS observed the sequential suppression of
To understand the in-medium effects of quarkonia in heavy ion collisions, it is necessary to perform differential studies of various observables to have a global picture of the quarkonium dynamics in the quark-gluon plasma (QGP). Recent results in proton-proton collisions have suggested that J/
Charmonium production is a probe sensitive to deconfinement in nucleus-nucleus collisions. The production of J/
Heavy quarks are primarily produced via initial hard scatterings, and thus carry information about the early stages of the Quark-Gluon Plasma (QGP). Measurements of the azimuthal anisotropy of the final-state heavy flavor hadrons provide information about the initial collision geometry, its fluctuation, and more importantly, the mass dependence of energy loss in QGP. Due to the larger bottom...
The observation of collectivity signals in small hadronic collisions raises the question of whether the tiny droplet of quark-gluon plasma can form in small systems. Dynamics and hadronization of heavy flavor quarks in small-system collisions provide a powerful tool to address the origin of observed collective phenomena because of their early production time and sensitivity to the finite...
Heavy quarks are one of the most important probes to study the properties of quark-gluon plasma (QGP). Hadronization of beauty quarks is not as well understood as in the charm sector. Illuminating the hadronization mechanism is crucial for extracting the transport properties of the QGP. We present new results on nuclear modification factors of
In this contribution the nuclear modification factor (
In this contribution, we present the latest measurements of
In this contribution, the final measurements of the centrality dependence of
The early production of heavy-flavour partons makes them an excellent probe of the dynamical evolution of QCD systems. Jets tagged by the presence of a heavy-flavour hadron give access to the kinematics of the heavy partons, and along with correlation measurements involving heavy-flavour hadrons allow for comparisons of their production, propagation and fragmentation across different systems....
Quankonia are an important probe to study the properties of the quark-gluon plasma (QGP) created in heavy-ion collisions. In particular, the
We investigate the in-medium kinetics of the X(3872) and
The strong interaction among D mesons and light-flavor hadrons was completely out of experimental reach until recently. The scattering parameters governing elastic and inelastic D-pion/kaon/proton collisions are completely unknown. This poses strong limitations not only to the search of molecular states composed of charm and non-charm hadrons, but also to the study of the rescattering of charm...
Recent experimental measurements display an enhanced production of charmed baryons in high-energy nucleus-nucleus collisions. Quite surprisingly the same is found in proton-proton collisions, in which the relative yields of charmed baryons do not agree with the expectations based on e+e- collisions and with the predictions of those QCD event generators in which the hadronization stage is tuned...
Ultra-relativistic heavy ion collisions are expected to generate a huge electromagnetic (e.m.) field that is envisaged to induce several effects on hot QCD matter including the possibility of local parity and local parity and charge conjugation symmetry violations. A direct signature of such e.m. fields and a first quantitative measurement of its strength and lifetime are still missing.
We...
The theoretical analysis of experimental observations, such as the mass hierarchy effect, often neglects some ingredients, which may be proven to have a significant impact. The forthcoming measurements at RHIC and LHC will generate heavy flavor data with unprecedented precision, providing an opportunity to utilize high-pT heavy flavor data to analyze the interaction mechanisms in the...
We discuss elliptic and triangular flow of charmonia in heavy ion collisions based on the coalescence model. Starting from the investigation on transverse momentum distributions of charmonium states, we calculate elliptic and triangular flow of charmonium states produced at quark-hadron phase boundary by quark recombination. We show that the wave function distribution of charmonium states...
One of the present challenge for the theoretical understanding of heavy-quark hadronization is represented by the description of the measurements of heavy baryon production in
The
The propagation of heavy quarks (HQs), charm and bottom, in the quark-gluon plasma (QGP) is described by means of a full Boltzmann transport approach. The non-perturbative dynamics and the interaction between HQs and the bulk is taken into account by means of a Quasi-Particle Model. Including the description of the intense electromagnetic and vortical fields, we discuss their impact on the...
The phenomenon of strangeness enhancement, originally proposed as a signature of quark-gluon plasma formation, has received considerable new interest following recent observations in small collision systems. LHCb is uniquely well suited to study such effects in the heavy quark sector, down to very low transverse momentum. Here we will present new LHCb results on the production rates of...
Heavy flavour and quarkonium production at hadron colliders provides an important test of the theory of Quantum Chromodynamics (QCD). The PHENIX experiment has a comprehensive physics program that studies open heavy flavor and quarkonium production in p/d+A and A+A collisions at the Relativistic Heavy Ion Collider (RHIC). It is critical to measure both open heavy flavor and quarkonium in...
This talk presents the latest ATLAS measurements of heavy flavor and hard probes of the Quark-Gluon Plasma, with an aim towards understanding the energy loss mechanisms for probes of different mass and flavor through interactions with the QGP medium. These include recent measurements of open heavy flavor modification and flow in large and small collision systems, new measurements of b-jet and...