Conveners
PA-Resonances and Hyper-nuclei
- Sungtae Cho
PA-Resonances and Hyper-nuclei
- Chiara Pinto (Technische Universitaet Muenchen (DE))
PA-Resonances and Hyper-nuclei
- Lukáš Chlad
Understanding light (anti-)nuclei production mechanism is a long-standing challenge in heavy-ion physics. Besides its own importance, it can benefit the search of QCD critical point as well as the detection of dark matter in space. In this presentation, we present a unified description of the microscopic dynamics of light (anti-)nuclei production in high-energy nuclear collisions by solving...
In recent years, ALICE has extensively studied the production of light (anti)(hyper)nuclei in different collision systems and center-of-mass energies. The production mechanism of light (hyper)nuclei is still under debate in the scientific community. Two classes of models are used to describe nuclear production: the statistical hadronisation model (SHM) and the coalescence model. In heavy-ion...
Hadronic resonances having short lifetimes are very useful to study the hadron-gas phase that characterizes the late-stage evolution of high energy nuclear collisions. Indeed, regeneration and rescattering processes occurring in the hadron gas modify the measured yields of hadronic resonances and can be studied by measuring resonance yields as a function of system size and by comparing to...
In this talk we will present recent results on light nuclei and hypernuclei production in heavy ion collisions over a wide beam energy range from the SIS18 to the LHC. Light clusters with mass number up to A=3 can be well described by a phase-space coalescence approach implemented in the microscopic transport model UrQMD. I will show that the final multiplicities for nuclear clusters in many...
The f$_0$(980) meson was observed several years ago in $\pi\pi$ scattering experiments. Despite a long history of experimental and theoretical studies, the nature of this short-lived resonance is far from being understood and there is no agreement about its quark structure. According to different models, it has been associated with $q\bar q$ structures, considered as a tetraquark, or as a...
Recent multiplicity-dependent studies of particle production in pp and p-Pb collisions have shown similar features as in heavy-ion collisions. Measurements using resonances could help to understand the possible onset of collective-like phenomena and a non-zero lifetime of the hadronic phase in a small collision system. Measurements of the differential yields of resonances with different...
Hypernuclei are bound states of nucleons and hyperons. The hyperon-nucleon ($Y$-$N$) interaction, an important ingredient for the nuclear equation-of-state (EoS), remains poorly constrained. Precise measurements of hypernucei intrinsic properties and production yields in heavy-ion collisions are crucial to the investigation of their production mechanisms and the strength of the $Y$-$N$...
The production of short lived resonances like $K^{*0}$ provides a unique opportunity to probe the hadronic phase formed in heavy-ion collisions. Due to its short lifetime the decay daughters may interact with the medium which may lead to a change in the properties of the resonances. The decay particles may undergo rescattering and re-generation effects. Hence $K^{*0}/K$ provides a unique tool...
The production and interaction of light nuclei and hyper-nuclei in high-energy heavy-ion collisions have been a focus of theoretical and experimental interests for a long time. The production of light nuclei in heavy-ion collisions can be explained by the coalescence of produced or transported nucleons. Due to the low binding energies of light nuclei and hyper-nuclei, it is more likely that...
Matter-antimatter asymmetry is a precondition necessary to explain the existence of our world made predominately of matter over antimatter. Antimatter is rare in the current universe making it difficult to study, but the Relativistic Heavy-Ion Collider (RHIC) provides us a unique opportunity to study antimatter with high-energy nuclear-nuclear collisions.
In this talk, we will report the...
We calculate the yields of molecular configuration hadrons produced by heavy ion collision using coalescence model. First, we calculated the transverse momentum distribution of deuteron using the coalescence model from proton transverse momentum distribution in Pb-Pb collisions at 2.76TeV measured by ALICE collaboration. From this, we estimate the parameters required for coalescence model at...